Bachelor of Games and Interactive Entertainment/Bachelor of Mathematics (IX64)

Year offered: 2010
Admissions: Yes
CRICOS code: 063031E
Course duration (full-time): 4 years
Domestic fees (indicative): 2010: CSP $3,100 (indicative) per semester
International Fees (indicative): 2010: $11,000 (indicative) per semester
Domestic Entry: February
International Entry: February
QTAC code: 419672
Past rank cut-off: 81
Past OP cut-off: 10
Assumed knowledge: English (4,SA), Maths B (4,SA)
Preparatory studies: For information on acquiring assumed knowledge visit http://www.student.services.qut.edu.au/apply/ug/info/knowledge.jsp
Total credit points: 384
Standard credit points per full-time semester: 48
Course coordinator: Dr Peta Wyeth (Games and Interactive Entertainment); Dr Tim Moroney (Mathematics)
Campus: Gardens Point

Course overview
In this double degree students complete the requirements for two separate degrees in four years. The course consists of units in both games and interactive entertainment and mathematics. In the games and interactive entertainment component students complete core units in introductory design, games studies, professional skills and basic programming and then choose a major from the list below. In final year, students participate in a major group project to produce a significant piece of work using PC, mobile devices, consoles or virtual reality. Full time students can take part in the Cooperative Education Program, offering one year paid industry placement and credit towards their degree (subject to satisfying eligibility requirements). In mathematics, students complete core units that provide a foundation for both study and future work in mathematics and games and interactive entertainment, and then select units from the strands in applicable mathematics, mathematical modelling, computational mathematics, operations research, statistics and financial mathematics. Students are assisted throughout their course with choices to match their career aspirations and abilities. All these strands involve project work and real-world applications.

Majors: Animation and computational arts; digital media; game design; and software technologies.

Cooperative Education Program
The School of IT’s Cooperative Education Program gives you the opportunity of 10-12 months paid industry placement during your course where you can integrate real experience with what you’re learning in your degree. Companies that QUT’s Coop Ed students have worked with include Energex, Boeing, CITEC, CSC Mining, Environmental Protection Agency, Dialog, UNiTAB, RACQ and many Queensland Government departments. The Coop Ed Program is available to Australian citizens and permanent residents only.

Find out more about the Cooperative Education Program.

Further information
For further information about this course, please contact the following:

Information Systems
Peta Wyeth
Phone: +61 7 3138 2782
Email: enquiry.scitech@qut.edu.au

Mathematical Sciences
Dr Tim Moroney
Phone: +61 7 3138 2262
Email: t.moroney@qut.edu.au

Course Structure for Students with Four Semesters of Senior Mathematics B and Senior Mathematics C

<table>
<thead>
<tr>
<th>Year 1, Semester 1</th>
<th>Year 2, Semester 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>INB180 Computer Games Studies</td>
<td>INB103 Industry Insights</td>
</tr>
<tr>
<td>INB182 Introducing Design</td>
<td>Games &amp; Interactive Entertain Major Unit</td>
</tr>
<tr>
<td>MAB121 Calculus and Differential Equations</td>
<td></td>
</tr>
<tr>
<td>MAB122 Algebra and Analytic Geometry</td>
<td></td>
</tr>
<tr>
<td>Year 1, Semester 2</td>
<td></td>
</tr>
<tr>
<td>INB181 Introduction to Games Production</td>
<td></td>
</tr>
<tr>
<td>INB104 Building IT Systems</td>
<td></td>
</tr>
<tr>
<td>MAB101 Statistical Data Analysis 1</td>
<td></td>
</tr>
<tr>
<td>MAB220 Computational Mathematics 1</td>
<td></td>
</tr>
<tr>
<td>Year 2, Semester 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Course Structure for Students with Four Semesters of Senior Mathematics B Only

#### Year 1, Semester 1
- INB180 Computer Games Studies
- INB204 Special Topic 1
- MAB101 Statistical Data Analysis 1
- MAB120 Algebra and Calculus

#### Year 1, Semester 2

#### Year 2, Semester 2
- MAB210 Statistical Modelling 1
- MAB312 Linear Algebra

#### Year 2, Semester 1
- INB103 Industry Insights
- MAB220 Computational Mathematics 1
- MAB312 Linear Algebra

#### Year 3, Semester 1
- MAB101 Statistical Data Analysis 1
- MAB120 Algebra and Calculus

#### Year 3, Semester 2
- MAB210 Statistical Modelling 1
- MAB311 Advanced Calculus

#### Year 4, Semester 1
- INB379 Game Project Design
- MAB101 Statistical Data Analysis 1
- MAB311 Advanced Calculus

#### Year 4, Semester 2
- INB380 Games Project

### Bachelor of Games & Interactive Entertainment Majors

#### Course structure (Block B)

#### Animation
- KIB105 Animation and Motion Graphics
- KIB108 Animation History and Practices
KVB105  Drawing for Design
KVB106  Drawing for Animation
KIB220  Animation Production
KIB203  Introduction to 3D Computer Graphics
KIB225  Character Development, Conceptual Design and Animation Layout
KIB325  Real-Time 3D Computer Graphics

Digital Media
KIB101  Visual Communication
KIB102  Visual Interactions
INB345  Mobile Devices
INB386  Advanced Multimedia Systems
KIB309  Embodied Interactions
KIB230  Interface and Information Design
INB385  Multimedia Systems
KIB314  Tangible Media

Game Design
INB280  Fundamentals of Game Design
INB272  Interaction Design
KIB201  Concept Development for Game Design and Interactive Media
KIB202  Enabling Immersion
INB281  Advanced Game Design
KIB214  Design for Interactive Media
AND Two units selected from the following:
DAB110  Architectural Design 1
DEB201  Digital Communication
DTB101  Interior Design 1
DNB101  Industrial Design 1

Software Technologies*
* Requirements for this Major is a SA or better in Queensland Maths B (or equivalent)
INB270  Programming
MAB281  Mathematics for Computer Graphics
INB210  Databases
INB250  Systems Architecture
INB370  Software Development
INB371  Data Structures and Algorithms
INB381  Modelling and Animation Techniques
INB382  Real Time Rendering Techniques

INB383  AI for Games

Mathematics Units

Level 2 Units
MAB311  Advanced Calculus
MAB312  Linear Algebra
MAB313  Mathematics of Finance
MAB314  Statistical Modelling 2
MAB315  Operations Research 2
MAB413  Differential Equations
MAB414  Applied Statistics 2
MAB420  Computational Mathematics 2
MAB422  Mathematical Modelling
MAB461  Discrete Mathematics
MAB480  Introduction to Scientific Computation
MAB481  Visualisation and Data Analysis
Note: MAB311 Advanced Calculus and MAB312 Linear Algebra are mandatory units.

Level 3 Units - at least 4 units must be selected
MAB521  Applied Mathematics 3
MAB522  Computational Mathematics 3
MAB524  Statistical Inference
MAB525  Operations Research 3A
MAB533  Statistical Techniques
MAB536  Time Series Analysis
MAB613  Partial Differential Equations
MAB623  Financial Mathematics
MAB624  Applied Statistics 3
MAB625  Operations Research 3B
MAB640  Industry Project
MAB672  Advanced Mathematical Modelling
MAB681  Advanced Visualisation and Data Analysis
Note: MAB523 Introduction to Quality Management and MAB621 Discrete Mathematics do not contribute to the mandatory 48 credit points minimum from Level 3 Mathematics units.

Potential Careers:
Actuary, Computer Game Programmer, Market Research Manager, Mathematician, Quantitative Analyst, Statistician.

UNIT SYNOPSES
DAB110 ARCHITECTURAL DESIGN 1
This unit offers a broad introduction to the field of design as applied to architecture. It uses developmental exercises to enhance student perceptions of the built environment in a problem based learning environment. Analysis of the constructed environment leads to a number of design projects that engage with issues of context, tectonics, planning, form, and spatial quality. Orthogonal drawing exercises, freehand sketching, presentation graphics and model making all form part of the unit content. Teaching and learning activities are spread across lectures, tutorials, and studio based activities.

Prerequisites: DEB103 or DLB130 or DNB101 or DTB101.
DEB103 can be studied in the same teaching period as DAB110
Equivalents: ADB001
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2010 SEM-1

DEB201 DIGITAL COMMUNICATION
This unit introduces students to the foundational aspects of digital design communication, placing generic design in context and focusing on multidisciplinarity in the stages of the design process. This unit is an approach to the theory and practice of digital media, exploring the translation from manual to digital media in design communication and presentation.

Credit points: 12
Contact hours: 3 per week
Campus: Gardens Point
Teaching period: 2010 SEM-2

DNB101 INDUSTRIAL DESIGN 1
Industrial design revolves around the creation of products that satisfy human needs within the constraints of industrial and commercial production. This involves the manipulation of form with an understanding of structure, function, and beauty. Through projects students will be exposed to: basic design elements and principles; introduction to product visualisation techniques including concept sketching and marker rendering; design process and concept development; basic model making techniques; design presentation.

Prerequisites: DEB103 or DAB110 or DLB130 or DTB101.
DEB103 can be studied in the same teaching period as DAB110
Equivalents: ADB201
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2010 SEM-1

DTB101 INTERIOR DESIGN 1
This unit provides foundational material for the study of interior design. Students will be introduced to design theory, methodology and aesthetics. Design will be explored as an interpretive process. Topics covered in the context of projects for the unit include: The studio as a way of learning; Introductory design exercises exploring two and three dimensional elements as they relate to the interior design context; Freehand sketching, principles of perspective; Mechanical drawing, principles of scaled drawing; Presentation and visual communication skills; Environmental issues and sustainability.

Prerequisites: DEB103 or DAB110 or DLB130 or DNB101.
DEB103 can be studied in the same teaching period as DTB101
Equivalents: ADB101
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2010 SEM-1

INB103 INDUSTRY INSIGHTS
This unit aims to develop your awareness of the career possibilities in the ICT industry and to equip you with some of the essential skills required of an ICT professional. The unit helps you to derive a roadmap for your career; to enable you to identify the qualities, skills and interests you need to possess, to plan your career path. The unit will also introduce you the inter-disciplinary nature of ICT careers.

Antirequisites: ITB002
Credit points: 12
Contact hours: 3 per week
Campus: Gardens Point
Teaching period: 2010 SEM-1 and 2010 SEM-2

INB104 BUILDING IT SYSTEMS
This team-based unit is an integrated introduction to information technology designed to engage, inspire and inform and will demonstrate the important role that technical system design and development plays in achieving robust operation of a large variety of technological solutions. This unit will give you substantial hands-on, practical learning experiences and will motivate you through engagement in the creative, explorative and meaningful development of technological artefacts that operate in real world contexts.

Antirequisites: ITB001
Credit points: 12
Contact hours: 3 per week
Campus: Gardens Point
Teaching period: 2010 SEM-1 and 2010 SEM-2

INB180 COMPUTER GAMES STUDIES
This unit is designed to give you a clear understanding of the socio-cultural issues that affect the computer game industry. Through critical review of games and games industry literature, playing games and actively participating in classroom discussion you will develop your capacity to join in the discourse about the design, impact and future direction of computer games in our society.

Antirequisites: INN180, ITB750
Credit points: 12
Contact hours: 3 per week
Campus: Gardens Point
Teaching period: 2010 SEM-1

INB181 INTRODUCTION TO GAMES PRODUCTION
This subject will provide you with knowledge and skills in games production. By gaining an overview of the production
In the course of this subject you will learn how the technology and the people involved integrate into a coherent and efficient manufacturing process. By the end of this subject you will have the knowledge to conceive, create, integrate and optimise tools and personnel into a complete games production system.

**Prerequisites:** INB180

**Equivalents:** ITB016, ITN016

**Credit points:** 12

**Contact hours:** 3 per week

**Campus:** Gardens Point

**Teaching period:** 2010 SEM-2

---

**INB182 INTRODUCING DESIGN**

TBA

**Prerequisites:** DEB101

**Credit points:** 12

**Contact hours:** 4 per week

**Campus:** Gardens Point

**Teaching period:** 2010 SEM-1

---

**INB204 SPECIAL TOPIC 1**

This unit gives you the opportunity to apply, under appropriate guidance, the knowledge and skills gained in your course to date and to execute a substantial development project. The ability to apply technical knowledge and skills to real-life situations is essential for information technology professionals. A substantial project, under academic supervision, will develop your initiative and ability to apply your knowledge and skills in a professional capacity. Completing the project will also enable you to appreciate the complementary nature of the course material in total, particularly the need for careful project management.

**Prerequisite(s):** Nil

**Corequisite(s):** Nil

**Credit points:** 12

**Contact hours:** 3 per week

**Campus:** Gardens Point

**Teaching period:** 2009 SEM-1 and 2009 SEM-2

---

**INB210 DATABASES**

The aim of this unit is to help you develop your knowledge, understand a formal specification tool (ORM) for modelling information systems unambiguously and to apply this formal technique to conceptualise information systems found in many real world application domains.

**Assumed knowledge:** Students are expected to have solid IT background knowledge (e.g., completion of at least 192 credit points)  
**Equivalents:** ITB004, ITB115

**Credit points:** 12

**Contact hours:** 3 per week

**Campus:** Gardens Point

**Teaching period:** 2010 SEM-2

---

**INB250 SYSTEMS ARCHITECTURE**

Contemporary computer-based systems are built from a wide range of technologies working at different levels of abstraction, from microprocessor hardware, to operating system and application software, to entire communications networks. At each abstraction level different techniques are needed to understand emergent properties of the system. This unit introduces some of the foundational principles commonly used to reason about the behaviour of computer-dependent systems at different levels of abstraction. Such techniques are especially important in the context of safety-, security- or mission-critical systems.

**Assumed knowledge:** Basic familiarity with set theory (Venn diagrams and set operators), elementary algebra (polynomial and summation expressions, exponents and logarithms, etc) and simple probability concepts (permutations and combinations).  
**Credit points:** 12

**Contact hours:** 3 per week

**Campus:** Gardens Point

**Teaching period:** 2010 SEM-2

---

**INB270 PROGRAMMING**

This unit aims to give you a positive introduction to the skills required in solving computational problems and implementing solutions in a programming or scripting language. Although some theoretical aspects of computer programming are introduced briefly, the overall emphasis of the unit is programming practice. The unit emphasises generic programming concepts and related problem-solving strategies. The skills you learn in this unit will be applicable to a wide variety of commonly-used, industrially-significant programming and scripting languages.

**Prerequisites:** INB104 or ENB246

**Antirequisites:** ITB003, ITB112, ITB411, INN270

**Credit points:** 12

**Contact hours:** 3 per week

**Campus:** Gardens Point

**Teaching period:** 2010 SEM-2

---

**INB272 INTERACTION DESIGN**

The aim of this unit is to provide you with an understanding of the theory, practices and challenges associated with the development of creative interactive design and human computer interaction.

**Prerequisites:** INB103 or INB181

**Credit points:** Nil

**Corequisite(s):** Nil

**Teaching period:** 2010 SEM-2

---

**INB280 FUNDAMENTALS OF GAME DESIGN**

Modern games production is a complex process involving various businesses and organisations, working with budgets in the tens of millions. One of the roles within a game production team is that of the game designer. It is crucial that a game designer understands how to create a game world, the rules that govern game play and other high level strategies. The skills you learn in this unit will be applicable to a wide variety of commonly-used, industrially-significant programming and scripting languages.

**Prerequisites:** INB180

**Equivalents:** ITB016, ITN016

**Credit points:** 12

**Contact hours:** 3 per week

**Campus:** Gardens Point

**Teaching period:** 2010 SEM-2
Gardens Point  Teaching period: 2010 SEM-2

INB281 ADVANCED GAME DESIGN
This unit will provide you with theoretical and practical knowledge of advanced games design concepts; that is, specific activities undertaken by game designers and their purpose. By the end of this unit you will have the knowledge to identify problems and suggest solutions for innovative game designs, as well as understand how to carry out the process of designing a game yourself. You will possess practical and theoretical knowledge of game design issues such as: how to design a game level, how to design a task and reward a player for completing it, how to ensure that the player knows how to progress through the game and how to design characters whose behaviour and dialogue provide clues and prompts to the player.

Prerequisites: INB280  Equivalents: ITB017  Credit points: 12  Contact hours: 3 per week  Campus: Gardens Point  Teaching period: 2010 SEM-1

INB345 MOBILE DEVICES
This unit provides the opportunity for exploring new and emerging mobile devices and wireless technology including iPhone, Netbook, 3G, WiMax, and RFID. Students will critically review and understand how they can be used for current contexts such as government, business, education and social community, as well as emerging ‘wilderness’ environments with no power and wired communication. Students will appreciate the impacts of these devices and be inspired for the current and future opportunities in ICT usage trends.

Credit points: 12  Contact hours: 3 per week  Campus: Gardens Point  Teaching period: 2010 SEM-1

INB370 SOFTWARE DEVELOPMENT
Understanding software development is an integral part of the IT industry for software engineers.? Software development relies on object technologies, programming techniques and numerous code libraries provided by language developers and third party vendors.? Integrated Development Environments, unit testing frameworks, automated and continuous build tools and versioning systems are all becoming part of the tool set modern software developers must be familiar with.? This unit is designed to introduce these technologies and techniques to show how software can be rapidly developed.

Prerequisites: INB270 or ITB003  Credit points: 12  Contact hours: 3 per week  Campus: Gardens Point  Teaching period: 2010 SEM-1

INB371 DATA STRUCTURES AND ALGORITHMS
The purpose of this unit is to ensure that you have a sound knowledge of modern programming techniques and their use in providing medium-scale software solutions. This unit will teach you to decompose a problem and produce a modular solution to a programming task. The principles to analyse algorithms for efficiency will also be introduced. In addition, you will acquire the necessary skills for you to use the tools available in common development environments, such as Microsoft Visual Studio.

Prerequisites: INB270 or ITB003  Antirequisites: ITB711, ITB702, INN371  Credit points: 12  Contact hours: 3 per week  Campus: Gardens Point  Teaching period: 2010 SEM-1

INB379 GAME PROJECT DESIGN
INB379 Bgie Game Project Design (P1) extends your work on the role, design, and plan of a computer game concept. The unit covers the conceptualisation and game design stages up to the game design pitch. If the project is given a green light by the assessment panel, it may be developed later in the P2 unit.

Antirequisites: ITB009, INB305  Assumed knowledge: Completion of at least 144 credit points of IT04 units, including all first year core units is assumed

Credit points: 12  Contact hours: 1 hour lecture - 2 hour supervisor meetings  Campus: Gardens Point  Teaching period: 2010 SEM-1 and 2010 SEM-2

INB380 GAMES PROJECT
This unit seeks to give you the opportunity to apply, under appropriate guidance, the knowledge and skills gained in your course to date and to execute a substantial related project. The unit also aims to allow you to develop the critical professional skills of working within a cross-disciplinary team and, through implementation of your project, develop the understanding of the role of careful planning, scope control and task management in ensuring that the project is successful.

Prerequisites: INB379 or INB305  Antirequisites: ITB020  Assumed knowledge: Students undertaking this unit must be enrolled in the Bachelor of Games and Interactive Entertainment

Credit points: 24  Contact hours: 3 per week  Campus: Gardens Point  Teaching period: 2010 SEM-1 and 2010 SEM-2

INB381 MODELLING AND ANIMATION TECHNIQUES
The unit will provide you with the knowledge and skills to use an industry standard graphics API to implement graphics applications and to develop a basic real time animation system using an industry standard language.

Prerequisites: INB371 and MAB281  Equivalents:  

Page 6/13
ITB746  Credit points: 12  Contact hours: 3 per week  
Campus: Gardens Point  Teaching period: 2010 SEM-1 and 2010 SEM-2

INB386 ADVANCED MULTIMEDIA SYSTEMS  
This advanced level unit will give you high level design and 
development skills in some of the current and emerging 
areas of the new media. Web delivered applications, stand-
alone systems and installations will be included. It will 
endeavour to give you an in-depth understanding of 
interactive Multimedia Systems. You will be given the 
thoretical basis and practical skills to motivate you in the 
design and creation of a state-of-the-art system in this 
discipline. In the process it will encourage a professional 
team approach appropriate to the industry environment. 

Prerequisites: INB385 (Special considerations may apply)  
Equivalents: ITB259, ITN259  Credit points: 12  
Contact hours: 3 per week  Campus: Gardens Point  
Teaching period: 2010 SEM-2

INB382 REAL TIME RENDERING TECHNIQUES  
This unit will provide you with knowledge and skills in basic 
to advanced techniques in real-time rendering using 
shading languages. You will be able to implement a high-
quality real-time rendering system in an industry standard 
API.

Prerequisites: INB371, INB381 and MAB281  
Antirequisites: ITB648 and ITB649  
Credit points: 12  Contact hours: 3 per week  
Campus: Gardens Point  Teaching period: 2010 SEM-2

INB383 AI FOR GAMES  
The aim of this unit is to provide students with an 
intermediate to advanced level course in computer game AI, 
involving algorithmic and utility-based approaches to solving 
a wide range of problems in the interactive entertainment 
and game industries. You will gain both practical and 
theoretical knowledge about a range of AI techniques 
applied in computer games. You will be able to identify and 
explain different types of AI agents, describe their 

algorithms using a pseudo code convention, identify and 
explain different structures and algorithms used to represent 
and solve a range of problems in computer game AI. 

Prerequisites: INB371 or MAB281  
Antirequisites: INB304 completed in semester 1 2009  
Credit points: 12  Contact hours: 4 per week  
Campus: Gardens Point  Teaching period: 2010 SEM-1

INB385 MULTIMEDIA SYSTEMS  
This unit will explore the concepts underpinning multimedia 
systems and the role played by these technologies in the 
overall knowledge of a computer professional. You will learn 
to: design and develop different kinds of interactive 
multimedia applications; understand the bank of knowledge 
in cultural developments surrounding the emergence of 
multimedia technologies; analyse design and processes that 
contribute to the production of a creative work, using 
contemporary hardware and software technologies; develop 
the creative potential of temporal media forms and their 
placement and use within new media works; understand 
principles and conventions associated with the interpretation 
and production of meaning through interactive visual 
representation.

Prerequisites: INB103 or ITB002  
Antirequisites: ITB257  
Credit points: 12  Contact hours: 3 per week  
Campus: Gardens Point  Teaching period: 2010 SEM-1

KIB101 VISUAL COMMUNICATION  
Communication Design deals with visual communication 
and the creation of meaning through images. This unit will 
introduce you to the principles, production and presentation 
of visual design and communication.

Equivalents: KIB801  Credit points: 12  
Contact hours: 4 per week  Campus: Kelvin Grove  
Teaching period: 2010 SEM-1 and 2010 SEM-2

KIB102 VISUAL INTERACTIONS  
This unit further develops interface design skills for 
communications technologies including design 
priorities, interaction, visual systems, refinement of 
concepts, project analysis and problem solving through 
presentation models.

Prerequisites: KIB101 or KIB801 or KPB101 or KPB150 or 
KPB155  
Equivalents: KIB802  Credit points: 12  
Contact hours: 3.5 per week  Campus: Kelvin Grove  
Teaching period: 2010 SEM-2

KIB105 ANIMATION AND MOTION GRAPHICS  
This unit provides an introduction to animation and motion 
graphics concepts and practices, with an emphasis on 
principles of design in motion

Equivalents: KIB804  Credit points: 12  
Contact hours: 3 per week  Campus: Kelvin Grove  
Teaching period: 2010 SEM-2

KIB108 ANIMATION HISTORY AND PRACTICES  
The unit is an introductory examination of the development 
of animation. It addresses social, cultural, economic and 
technological themes that have shaped notable practitioners 
and established animation as a significant medium for the 
expression of popular culture, artistic experiment and 
philosophical, social and political comment.

Equivalents: KIB825  Credit points: 12  
Contact hours: 3 per week  Campus: Kelvin Grove  
Teaching period: 2010 SEM-1
KIB201 CONCEPT DEVELOPMENT FOR GAME DESIGN AND INTERACTIVE MEDIA
This unit addresses theoretical issues associated with non-linear story structures and interactive narratives through the analysis of game structures, the creation of original game ideas and the application of techniques of information design to the structuring of non-narrative content. Addressing the creative and analytical roles of writers, conceptual designers and information designers in the context of interactive digital media and the Creative Industries.
Equivalents: KIB816 Credit points: 12 Contact hours: 3 per week Campus: Kelvin Grove Teaching period: 2010 SEM-1

KIB202 ENABLING IMMERSION
As creative practitioners within a highly networked technological society, it is important to develop a critical understanding of how the application of technology influences modes of communication, production processes and creative practices, particularly within the Creative Industries. This unit provides an introductory overview of the philosophies underlying applications of technology, and critically examines current applications in order to explore creative visions of future technology.
Prerequisites: KIB201 Equivalents: KIB814 Credit points: 12 Contact hours: 3 per week Campus: Kelvin Grove Teaching period: 2010 SEM-2

KIB203 INTRODUCTION TO 3D COMPUTER GRAPHICS
The field of 3D computer graphics has grown from being a highly specialist field, supported by large film studios, into a vast and growing industry. Throughout film and television, scientific visualization, industrial and architectural design, physical modelling, animation and gaming; 3D visualisation has become a significant contributor to the construction of virtual worlds and the simulation of physical environments. This unit provides an introduction to the world of 3D graphics, paying particular attention to pre-production techniques, project management, 3D modelling techniques, and designing virtual environments. It establishes a foundation for advanced study in subsequent units on Real-time Computer Graphics and Virtual Environments. Theoretical understandings gained through lectures will be supplemented with technical skills in workshops, and applied to the production of 3D environments in design studios.
Credit points: 12 Contact hours: 3 per week Campus: Kelvin Grove Teaching period: 2010 SEM-1

KIB214 DESIGN FOR INTERACTIVE MEDIA
Designing for contemporary media requires a sophisticated understanding of how we effectively interact with new technologies, software applications, displays and environments. This unit focuses on the field of interaction design and user experience design. It develops an understanding of the theories, methods, and processes employed by Interaction Designers through a series of lectures and tutorials. These principles are then applied to authentic design briefs within design studios.
Prerequisites: KIB102 or KIB202 or KIB802 or KIP402 Equivalents: KIB210 Credit points: 12 Contact hours: 3 per week Campus: Kelvin Grove Teaching period: 2010 SEM-1

KIB220 ANIMATION PRODUCTION
Animation employs a studio-based production process that introduces you to workflows, practice-based investigations, critical thinking and problem-based learning. Animation: Studio Production will support you to build animation studio production skills by introducing design briefs, networking, teamwork and collaboration. This unit will focus particular attention on image-based solutions for the production of animated work. It will allow you to advance your skills and techniques in matte painting, image-based modeling, terrain and environment modeling, particle systems for environments, and 3D object creation and shading, as you develop an area of specialisation through personal investigation and self-directed inquiry.
Prerequisites: KIB105 and KVB106 Credit points: 12 Contact hours: 6 per week Campus: Kelvin Grove Teaching period: 2010 SEM-1

KIB225 CHARACTER DEVELOPMENT, CONCEPTUAL DESIGN AND ANIMATION LAYOUT
This unit emphasizes production in practice. By considering type and generic attributes within a technological context, you will be guided through the key concepts involved in the development of working drawings and final artworks.
Prerequisites: KIB203 or KIB107 Equivalents: KIB106, KIB807 Credit points: 12 Contact hours: 3 per week Campus: Kelvin Grove Teaching period: 2010 SEM-2

KIB230 INTERFACE AND INFORMATION DESIGN
With the advent of new technologies for communication, graphical user interfaces have become fundamental to the design of effective communication, and a key factor in the uptake, ease of use and experience of technology systems. This unit builds upon knowledge and skills acquired in units on visual communication and Web design to establish the knowledge and skills required to design and produce effective visual interfaces for technology applications such as Web, small screens in mobile media, and interactive displays. It will cover theories and principles of visual communication, information architecture and user experience design, which will be applied in the production of interfaces for interactive media and digital projects. The unit will be taught through a combination of lectures, tutorials and practical classes, in which skills and knowledge will be
Prerequisites: KIB101 or KIB801  Equivalents: KIB211
Credit points: 12  Contact hours: 3 per week  Campus: Kelvin Grove  Teaching period: 2010 SEM-1

KIB309 EMBODIED INTERACTIONS
Interaction with technology has advanced beyond the desktop paradigm of mouse and keyboard to embodied interfaces that incorporate video tracking, audio input, and gestural interaction techniques. Applications range from wearable technology to tangible media installations. This unit introduces an experimental field of interactive media design through the practical application of the processes and techniques of tangible media applications. Lectures, which provide the theoretical grounding of the study area, methodologies and examples of the application of tangible media are complemented by practical classes which extend the technical skills acquired in Programming for Designers and Artists and support the development of tangible media outcomes within design studios.
Prerequisites: KIB205 or INB385  Equivalents: KIB311
Credit points: 12  Contact hours: 3 per week  Campus: Kelvin Grove  Teaching period: 2010 SEM-1

KIB314 TANGIBLE MEDIA
This unit extends the understandings of tangible media interfaces and applications gained in the embodied media unit. In this unit students will develop a tangible media project from concept through to design, production, evaluation, and exhibition. Theoretical understandings on tangible media object design, interaction and installation gained through lectures will be supplemented with production skills in workshops, and applied to the development of tangible media works in design studios. Finished works will be displayed in a final exhibition where members of the public will interact with them.
Prerequisites: KIB309  Equivalents: KIB311  Credit points: 12  Contact hours: 3 per week  Campus: Kelvin Grove  Teaching period: 2010 SEM-2

KIB325 REAL-TIME 3D COMPUTER GRAPHICS
This unit provides the opportunity for extending the principles of 3D computer graphics into the emerging field of virtual environments that respond to interaction in real time. In this unit you will cover the principals of real-time modeling; texture acquisition for real-time environments and interaction design in the 3D context. This unit provides an opportunity where students studying 3D computer graphics can apply animation and interactive design principles to real-time spaces. These principles can be applied to the fields of game design and interactive 3D environments.
Prerequisites: KIB225  Equivalents: KIB310, KIB821  Credit points: 12  Contact hours: 3 per week  Campus: Kelvin Grove  Teaching period: 2010 SEM-2

KVB105 DRAWING FOR DESIGN
This unit introduces an experimental field of interactive media design through the practical application of the processes and techniques of tangible media applications. Lectures, which provide the theoretical grounding of the study area, methodologies and examples of the application of tangible media are complemented by practical classes which extend the technical skills acquired in Programming for Designers and Artists and support the development of tangible media outcomes within design studios.
Prerequisites: KIB205 or INB385  Equivalents: KIB311
Credit points: 12  Contact hours: 3 per week  Campus: Kelvin Grove  Teaching period: 2010 SEM-1

KVB106 DRAWING FOR ANIMATION
Interaction with technology has advanced beyond the desktop paradigm of mouse and keyboard to embodied interfaces that incorporate video tracking, audio input, and gestural interaction techniques. Applications range from wearable technology to tangible media installations. This unit introduces an experimental field of interactive media design through the practical application of the processes and techniques of tangible media applications. Lectures, which provide the theoretical grounding of the study area, methodologies and examples of the application of tangible media are complemented by practical classes which extend the technical skills acquired in Programming for Designers and Artists and support the development of tangible media outcomes within design studios.
Prerequisites: KIB205 or INB385  Equivalents: KIB311
Credit points: 12  Contact hours: 3 per week  Campus: Kelvin Grove  Teaching period: 2010 SEM-1

MAB101 STATISTICAL DATA ANALYSIS 1
Experiments, observational studies, sampling, and polls; data and variables; framework for describing and manipulating probability; independence; Binomial and Normal distributions; population parameters and sample statistics; concepts of estimation and inference; standard error; confidence intervals for means and proportions; tests of hypotheses on means and proportions (one sample and two independent samples); inference using tables of counts; modelling relationships using regression analysis; model diagnosis; use of statistical software.
Antirequisites: BSB123, EFB101, MAB141, MAN101
Assumed knowledge: Grade of at least Sound Achievement in Senior Mathematics B (or equivalent) or MAB105 is assumed knowledge. Credit points: 12  Contact hours: 4 per week  Campus: Gardens Point  Teaching period: 2010 SUM-2, 2010 SEM-1 and 2010 SEM-2

MAB120 ALGEBRA AND CALCULUS
This unit introduces and reviews the elementary concepts of function, calculus, matrices and vectors with special reference to applications in science, technology and business where appropriate. Topics covered include the algebra of complex numbers, elementary functions (polynomial, trigonometric, exponential and logarithmic) and their properties, differentiation and integration methods and principles, geometric and algebraic applications of vectors and the solution of linear systems using matrices.
Assumed knowledge: Grade of at least Sound Achievement in Senior Mathematics B (or equivalent) or MAB105 is assumed knowledge  Equivalents: MAB100, MAB125, MAB180  Credit points: 12  Contact hours: 4 per week  Campus: Gardens Point  Teaching period: 2010 SEM-1, 2010 SEM-2 and 2010 SUM
MAB121 CALCULUS AND DIFFERENTIAL EQUATIONS
This unit extends the areas of function and calculus introduced in MAB120 by introducing series representations for functions and more advanced methods of differentiation and integration for functions of one variable. A strong connection to real world problems is made by introducing the use of differential equations in modelling, and exploring appropriate methods of solution. Practical calculations of volumes and surface areas of solids of revolution extend your interpretations of the definite integral. Taylor and Fourier series are introduced as a means of approximating functions by sums of polynomials and periodic functions. Some more advanced methods for indefinite integrals, such as partial fraction decomposition, are also introduced.

Assumed knowledge: Grade of at least Sound Achievement in Senior Mathematics C (or equivalent) or MAB125 or MAB180 or MAB120 is assumed knowledge

Equivalents: MAB111, MAB126 Credit points: 12

Contact hours: 4 per week  Campus: Gardens Point  
Teaching period: 2010 SEM-1, 2010 SEM-2 and 2010 SUM

MAB122 ALGEBRA AND ANALYTIC GEOMETRY
This unit extends your knowledge in the areas of functions, calculus, matrices and vectors introduced in MAB120 by introducing functions of more than one variable, partial derivatives and multiple integrals, vector valued functions, and matrix methods for the solution of large systems of linear equations.

Equivalents: MAB112, MAB127, MAB132  
Credit points: 12  
Contact hours: 4 per week  Campus: Gardens Point  
Teaching period: 2010 SEM-1, 2010 SEM-2 and 2010 SUM

MAB210 STATISTICAL MODELLING 1
This unit includes: probability; independence; system reliability; using conditional probability in modelling; Bayes; introductory Markov chains; random variables and distributions; special distributional models; Bernoulli process; Poisson process; exponential; introductory queuing processes; expected values and moments; goodness-of-fit tests; measures of dependence; introductory bivariate and correlation properties; conditioning arguments.

Assumed knowledge: Grade of Sound Achievement in Senior Mathematics C (or equivalent) or MAB120 is assumed knowledge. Students are advised to enrol in either MAB210 or MAB212 in the same semester if not previously completed.  
Credit points: 12  
Contact hours: 4 per week  Campus: Gardens Point  
Teaching period: 2010 SEM-1 and 2010 SEM-2

MAB220 COMPUTATIONAL MATHEMATICS 1
This unit includes: sources of error; computer arithmetic; solution of nonlinear equations in one variable; solution of systems of linear equations; interpolation; finite differences; numerical differentiation and integration; solution of first order linear differential equations; MATLAB programming. Students without an exit level of Sound Achievement in four semesters of Senior Mathematics C need to be concurrently enrolled in MAB100 if not completed earlier.

Assumed knowledge: Grade of at least Sound Achievement in Senior Mathematics B (or equivalent) or MAB105 and corequisite MAB120 or MAB125 or MAB100 or MAB180 if you don’t have Senior Mathematics C is assumed knowledge  
Credit points: 12  
Contact hours: 4 per week  Campus: Gardens Point  
Teaching period: 2010 SEM-1 and 2010 SEM-2

MAB281 MATHEMATICS FOR COMPUTER GRAPHICS
This unit introduces students to the mathematics involved in computer graphics, computer games and virtual reality. It is heavily reliant on analytic, Euclidean and projective geometries in 2D and 3D, elementary trigonometry, elementary linear algebra and elementary calculus. The unit will develop the mathematical concepts and where practicable show how these concepts are then applied in the field of computer graphics. Students must have completed four semesters of Senior Mathematics B with an exit level of Sound Achievement, or have passed MAB105 (or equivalent).

Assumed knowledge: Grade of at least Sound Achievement in Senior Mathematics B (or equivalent) or MAB105 is assumed knowledge.  
Credit points: 12  
Contact hours: 4 per week  Campus: Gardens Point  
Teaching period: 2010 SEM-2

MAB311 ADVANCED CALCULUS
This unit includes the following: polar coordinates; parametric equations; conic sections; quadric surfaces; vector-valued functions; Fourier series; functions of several variables; graphs; partial derivatives; total derivatives; extrema; Lagrange multipliers; Taylor series for multivariable functions; double and triple integrals; Green's theorems; line and surface integrals; divergence theorem; Stoke's theorem; applications.

Prerequisites: (MAB111 or MAB121) and (MAB112 or MAB122)  
Credit points: 12  
Contact hours: 4 per week  Campus: Gardens Point  
Teaching period: 2010 SEM-1

MAB312 LINEAR ALGEBRA
This unit covers the following broad topics from linear algebra: matrix analysis; eigenvalues and eigenvectors; vector spaces; inner product spaces.

Prerequisites: (MAB111 or MAB121) and (MAB112 or MAB122)  
Credit points: 12  
Contact hours: 4 per week  Campus: Gardens Point  
Teaching period: 2010 SEM-1

MAB313 MATHEMATICS OF FINANCE
This unit includes: interest rates; solution of problems in compound interest; applications of annuities; valuation of securities; quantitative techniques in business and finance. Students need to concurrently enrol in MAB111 unless already completed.

Prerequisites: MAB111 or MAB121 Antirequisites: MAN313 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2010 SEM-2

MAB314 STATISTICAL MODELLING 2
This unit includes: models for stochastic processes and statistical methods, which have applications in engineering, information technology, finance, and physical and life sciences. Markov chains; random walks; branching processes; queueing processes; long-term behaviour of processes; use of generating functions; bivariate and conditional distributions; transformations of random variables; beta and gamma distributions; mixture distributions; order statistics, minimum and maximum.

Prerequisites: MAB112 and MAB210 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2010 SEM-1

MAB315 OPERATIONS RESEARCH 2
This unit introduces the essential features of operations research methods. It develops a number of basic mathematical techniques to solve generic problems and the theoretical foundations of these techniques. Students should develop the ability to apply various operations research methods, algorithms and techniques in the solution of practical problems. Students will also look at the applications of operations research techniques to real-world problems.

Prerequisites: MAB210 and (MAB112 or MAB122) Credit Points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2010 SEM-1

MAB413 DIFFERENTIAL EQUATIONS
This unit includes: linear and nonlinear differential equations; series methods; Laplace transform; transforms of derivatives and integrals; systems of differential equations; basic theory on linear systems; solution of linear systems with constant coefficients; matrix methods; phase plane analysis.

Prerequisites: MAB311 or MAB312 Antirequisites: MAN413 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2010 SEM-2

MAB414 APPLIED STATISTICS 2
This unit includes: Simple linear regression (revision), multiple linear regression, making inferences from regressions, choosing a model, checking model assumptions, general linear models - analysis of covariance, ANOVA revisited, designing experiments, issues in designing experiments, analysing experimental results, further experimental designs, assumptions, and how to cope if they aren't met, simulations.

Prerequisites: MAB101 and MAB111 Assumed knowledge: MAB112 is recommended prior study Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2010 SEM-2

MAB420 COMPUTATIONAL MATHEMATICS 2
This unit includes: direct methods for systems of linear equations; solution methods for special matrix systems (banded matrix systems, block-banded matrix systems, data structures and algorithms for storing and manipulating sparse matrices, reordering schemes); vector and matrix norms (basic theory and definitions, error bounds for direct methods, condition numbers); iterative methods for systems of linear equations (Jacobi, Gauss-Seidel, Successive Over-Relaxation, conjugate gradient); iterative methods for the eigenvalue problem.

Prerequisites: MAB220 and MAB312 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2010 SEM-2

MAB422 MATHEMATICAL MODELLING
This unit includes models developed with the "real world" description. These models are taken from the areas of cancer research, population growth and engineering. Emphasis is on mathematical modelling and not on the development of new mathematical content.

Prerequisites: MAB121 Antirequisites: MAN422 Assumed knowledge: MAB220 is recommended for prior/concurrent study for exposure to MATLAB Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2010 SEM-2

MAB461 DISCRETE MATHEMATICS
This unit includes: models for stochastic processes and statistical methods, which have applications in engineering, information technology, finance, and physical and life sciences. Markov chains; random walks; branching processes; queueing processes; long-term behaviour of processes; use of generating functions; bivariate and conditional distributions; transformations of random variables; beta and gamma distributions; mixture distributions; order statistics, minimum and maximum.

Prerequisites: MAB112 or MAB122 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2010 SEM-2

MAB480 INTRODUCTION TO SCIENTIFIC COMPUTATION
This unit teaches students how to implement a mathematical algorithm in a modern scientific computing
environment (eg Matlab). A case-study approach is used with an emphasis on writing efficient code. Also an overview of other software packages used in mathematics will be given.

**Prerequisite(s):** MAB112 or MAB132 or MAB182 (Recommended: MAB210 or MAB220)  
**Credit points:** 12  
**Contact hours:** 4 per week  
**Campus:** Gardens Point  
**Teaching period:** 2009 SEM-2  
**Incompatible with:** MAB380, ITB849

**MAB481 VISUALISATION AND DATA ANALYSIS**  
This unit covers; history and evolution of data visualisation, definition of data visualisation, impact of data visualisation; fundamentals of computer graphics and modern day visualisation environments; visualisation of 2-D and 3-D data; general visualisation techniques including filtering; colour map transformations; contouring; height fields; coloured height fields; interpolation; Delauney triangulation; iso-surfaces; volume visualisation; probing; slicing; streamlines; streaklines and texture mapping; visualisation of multi-dimensional data; other data types such as finite element, vector, molecular and scatter data. Not offered after 2009.  
**Prerequisite(s):** MAB101, MAB111, MAB480 or ITB003 (Highly Recommended: MAB112)  
**Credit points:** 12  
**Contact hours:** 4 per week  
**Campus:** Gardens Point  
**Teaching period:** 2009 SEM-1

**MAB524 STATISTICAL INFERENCE**  
This unit includes: maximum likelihood estimation, confidence intervals and hypothesis tests, introduction to Bayesian inference, prior and posterior distributions, Bayesian inference for binomial data, Poisson count data and normal data, simulation techniques for sampling from distributions. Use of software Matlab and R.  
**Prerequisite(s):** MAB314  
**Credit points:** 12  
**Contact hours:** 4 per week  
**Campus:** Gardens Point  
**Teaching period:** 2010 SEM-1

**MAB525 OPERATIONS RESEARCH 3A**  
This unit develops problem-solving skills and sharpens analytical skills. This unit introduces the technical issues involved in applying operations research principles, methods and algorithms in the solution of real-world problems.  
**Prerequisite(s):** MAB315  
**Credit points:** 12  
**Contact hours:** 4 per week  
**Campus:** Gardens Point  
**Teaching period:** 2010 SEM-1

**MAB533 STATISTICAL TECHNIQUES**  
This unit builds on your knowledge and skills of statistical techniques and aims to provide you with an understanding and a working knowledge of some more specialised statistical techniques and their applications. Topics covered include quality management concepts and tools for statistical process control, modelling and analysis of reliability (for inanimate objects) and survival (for living entities), and multivariate techniques such as principal components analysis, discriminant analysis and cluster analysis.  
**Prerequisite(s):** MAB210 and MAB414  
**Antirequisites:** MAB523  
**Credit points:** 12  
**Contact hours:** 4 per week  
**Campus:** Gardens Point  
**Teaching period:** 2010 SEM-1

**MAB536 TIME SERIES ANALYSIS**  
This unit includes the following: fundamentals of time series analysis; time series models; nonstationary processes; seasonal ARIMA models; vector autoregression; long-range dependence and fractional ARIMA models; co-integration of nonstationary processes.  
**Prerequisite(s):** MAB314 and MAB414  
**Antirequisites:** MAB536, MAB526  
**Credit points:** 12  
**Contact hours:** 4 per week  
**Campus:** Gardens Point  
**Teaching period:** 2010 SEM-2

**MAB613 PARTIAL DIFFERENTIAL EQUATIONS**  
This unit includes the following: derivation of certain partial differential equations; solution of partial differential equations by separation of variables, Laplace and Fourier transforms; Sturm-Liouville systems; special functions; Green's functions.  
**Prerequisite(s):** MAB311 and MAB413  
**Antirequisites:** MAN613  
**Credit points:** 12  
**Contact hours:** 4 per week

CRICOS No. 00213J ABN 83 791 724 622
Campus: Gardens Point  Teaching period: 2010 SEM-2

MAB623 FINANCIAL MATHEMATICS
This unit includes the following: quantitative techniques in business, economics and finance; theory and structure of interest rates; general accumulation and discounting functions; force of interest; discounting including Modern Portfolio theory and extension; varying interest; general annuities; varying annuities; continuous varying annuities; mathematical analysis of financial transactions in money and capital markets; life annuities and life assurances; the life table; basic life table functions; life annuities and assurances; policy values; paid up policy values; changes to policies; use of life table; superannuation.
Prerequisites: MAB313 and MAB311  Credit points: 12
Contact hours: 4 per week  Campus: Gardens Point  Teaching period: 2010 SEM-2

MAB624 APPLIED STATISTICS 3
This unit includes the following: design of experiments for factorial investigations (two and three-level factors, Taguchi’s approach, fractions and blocking, response surfaces); general linear model; regression graphics; multi-stratum designs and analysis; repeated measures designs and analysis; linear-logistic and log-linear models; use of statistical software.
Prerequisites: MAB414  Antirequisites: MAN624
Credit points: 12  Contact hours: 4 per week  Campus: Gardens Point  Teaching period: 2010 SEM-2

MAB625 OPERATIONS RESEARCH 3B
This unit includes: phases of an operations research study; decision analysis; queuing theory; simulation; implementation in operations research; heuristic techniques.
Prerequisites: MAB315  Credit points: 12  Contact hours: 4 per week  Campus: Gardens Point  Teaching period: 2010 SEM-2

MAB640 INDUSTRY PROJECT
For this unit, you will usually work in industry part-time. You will be assisted to develop a suitable plan to manage the project. You are expected to record progress and subsequently develop an accurate report.
Other requisites: Unit coordinator approval is required to enrol  Credit points: 24  Campus: Gardens Point  Teaching period: 2010 SEM-1 and 2010 SEM-2

MAB672 ADVANCED MATHEMATICAL MODELLING
Models are developed beginning with the description of 'real world' problems. Emphasis is on the mathematical modelling and not on the development of new mathematical techniques. The unit includes: mathematical modelling; model formulation; dimensional analysis and re-scaling; curves of pursuit; bungy jumping; modelling with systems of ordinary differential equations; phase plane methods for analysing systems of ODEs; bacterial growth in a chemostat; predator-prey models with harvesting; limit cycles; oscillations and excitable media; modelling with partial differential equations; motion of a continuum; continuity; traffic flow; aggregation of slime mould amoebae; momentum; ideal gas dynamics; quasi-linear PDEs.
Prerequisites: MAB422 and MAB312  Antirequisites: MAN672
Credit points: 12  Contact hours: 4 per week  Campus: Gardens Point  Teaching period: 2010 SEM-1