Unit sets: Natural Resource Sciences

Year offered: 2010
Admissions: Yes

Unit sets
These unit sets have been designed such that introductory units have no prerequisites. Later units in each set may have earlier units as prerequisites.

Due to timetabling constraints it may not be possible to complete all units in a University Wide Elective Set.

Consult with your course coordinator and relevant discipline coordinators prior to undertaking interfaculty studies.

Please be aware that the units you complete in a University Wide Elective Sets will appear on your academic transcript but the unit set title will not unless the set exists as a minor in your course.

Natural Resource Sciences unit set

Select FOUR units from the following:

- NQB201 Planet Earth
- NQB202 History of Life on Earth
- NQB302 Earth Surface Systems
- NQB311 Mineralogy
- NQB314 Sedimentary Geology
- NQB321 Ecology
- NQB322 Invertebrate Biology
- NQB323 Plant Biology
- NQB403 Soils and the Environment
- NQB422 Genetics and Evolution
- NQB423 Vertebrate Biology
- SCB110 Science Concepts and Global Systems
- SCB112 Cellular Basis of Life
- SCB120 Plant and Animal Physiology

UNIT SYNOPSISES

NQB201 PLANET EARTH
Earth Science impacts every aspect of modern life. Hence, the concepts of Earth Science are fundamental not only to the field of Geology, but also to Environmental Science, natural resource management, civil engineering and society at large. Planet Earth provides an introduction to Earth Science, including earth materials, geologic history, geological process at the Earth’s surface, and the complex interplay between the lithosphere, atmosphere, hydrosphere and biosphere through geologic time. Thus, Planet Earth is foundation unit for further studies in Geology and Environmental Science and also serves as a broad introduction to the world we live on.

Equivalent: NRB230 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2010 SEM-2

NQB202 HISTORY OF LIFE ON EARTH
This unit provides an introduction to the history and development of life on Earth with an emphasis on fundamental biological and ecological principles as they have operated through geologic time. The unit provides the student with an understanding of the processes of evolution, extinction and the changing environmental conditions throughout Earth’s history. The unit provides the student with practical experience in fossil identification, classification and morphological interpretation. It provides the student with a “deep-time” perspective of climate and other environmental changes affecting modern ecosystems. Hence, History of Life on Earth is a foundation unit for the Earth and Environmental Sciences as well as Ecology, Biological Sciences and Education.

Equivalent: NRB240 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2010 SEM-2

NQB302 EARTH SURFACE SYSTEMS
Understanding long and short term climate and environmental change is now recognised as crucial to the interpretation of our biotic, geomorphic and cultural landscapes. To fully understand environment change it is important to recognise the interconnectedness between the atmosphere, hydrosphere, lithosphere, biosphere and humanity’s place within these spheres over various temporal and spatial scales. Developing knowledge of past and present climate change and landscaping processes helps to predict future process pathways for natural resource management, civil engineering, risk analysis, and impact assessment in the context of both natural and anthropogenic induced change.

Assumed knowledge: NQB201 is assumed knowledge.

Equivalent: NRB301 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2010 SEM-1

NQB311 MINERALOGY
Minerals are the building blocks of rocks which comprise the solid Earth. The study of minerals is essential for understanding the structure and composition of the earth
and the detailed processes of the rock cycle. Mineralogy forms the basis for petrology (the study of the genesis of rocks) and geochemistry, and is thus essential for Geoscience. The unit may also be of interest to chemists.

Equivalents: NRB333 **Credit points:** 12 **Contact hours:** 4 per week **Campus:** Gardens Point **Teaching period:** 2010 SEM-1

NQB314 SEDIMENTARY GEOLOGY

This unit provides students with an introduction to sedimentology; both sediments and sedimentary rocks. The unit focuses on the link between the range of features preserved in sedimentary rocks and what those features tell us about sedimentary processes, depositional environments and the burial history of the rocks. The sedimentological processes and depositional environments observed in the modern world are discussed and used as a foundation for interpreting the evidence preserved in the ancient sedimentary rock record, in turn revealing much about earth processes in geologic history.

Assumed knowledge: NQB201 is assumed knowledge.
Equivalents: NRB331 **Credit points:** 12 **Contact hours:** 4 per week **Campus:** Gardens Point **Teaching period:** 2010 SEM-1

NQB321 ECOLOGY

Ecology is the study of the factors that influence the distribution and abundance of organisms. Ecology deals with basic properties of individuals and the emergent properties of collections of individuals that form populations and the dynamics of these populations and their interactions with populations of other species. An understanding of basic ecological principles is central to managing species and ecosystems. This unit provides a broad theoretical background in the major concepts of plant and animal ecology. It serves the dual role of providing a thorough grounding in ecology for students from all faculties; and laying the conceptual foundation for later subjects in the ecology and environmental science.

Prerequisites: SCB110 or SCB112
Equivalents: NRB311 **Credit points:** 12 **Contact hours:** 4 per week **Campus:** Gardens Point **Teaching period:** 2010 SEM-1

NQB322 INVERTEBRATE BIOLOGY

Anyone pursuing a career as an ecologist, environmental biologist, or teacher needs to be familiar with invertebrates, including their diversity and how they function. Because approximately 90% of all invertebrates are arthropods, this unit focuses on this dominant phylum, which includes all the animals with jointed exoskeletons (the insects, prawns and crabs, spiders, millipedes and more). The aim is to provide you with an overview of arthropod diversity, structure and function, as a basis for exploring the role of arthropods in natural and human-modified systems.

Equivalents: NRB370 **Credit points:** 12 **Contact hours:** 4 per week **Campus:** Gardens Point **Teaching period:** 2010 SEM-1

NQB323 PLANT BIOLOGY

This unit will provide an understanding and appreciation of plants by taking an evolutionary approach to the study of major plant groups. Content includes life cycles, morphology, adaptations for survival in varied environments, economic and ecological aspects of various groups as they relate to humans, phylogeny and diversity of major groups. This unit will encourage careful observation, curiosity and thinking about plants. The practicals will provide an opportunity to observe and understand form, function and diversity and will emphasise development of skills in plant systematics and identification, with special emphasis on Australian flora.

Prerequisites: SCB112
Equivalents: NRB371 **Credit points:** 12 **Contact hours:** 4 per week **Campus:** Gardens Point **Teaching period:** 2010 SEM-1

NQB403 SOILS AND THE ENVIRONMENT

Soils are the dynamic component of Earth surface processes, being the interface of the lithosphere and the atmosphere and a key system within the biosphere and the hydrosphere. It is, therefore, one of the most critical resources to consider within the context of climate change. This unit will provide you with grounding in soil science by emphasising pedological principles, their application to environmental soil analysis and management, and knowledge of ecosystem function of soils in a changing environment. The unit would provide experience in describing and classifying soils and soil materials as well as field experiences in the investigation of soil processes and the assessment of resource potential and environmental hazard.

Prerequisites: NQB302 or NRB301 or (ENB272 and ENB274)
Credit points: 12 **Contact hours:** 4 per week **Campus:** Gardens Point **Teaching period:** 2010 SEM-2

NQB422 GENETICS AND EVOLUTION

This unit provides a basic understanding of the mechanisms of inheritance using Mendelian Genetics as a foundation. These principles are extended to develop a clear understanding of the mechanisms and processes that drive evolution in natural populations. Topics include the physical basis of heredity, Mendelian and non-Mendelian inheritance patterns, genotype/environment interactions, quantitative traits, evolutionary theory, adaptation and natural selection, speciation and phylogeny, sexual selection and the evolution of life histories.

Prerequisites: SCB112
Equivalents: NRB410 **Credit points:** 12 **Contact hours:** 4 per week **Campus:** Gardens Point **Teaching period:** 2010 SEM-2
NQB423 VERTEBRATE BIOLOGY
Any graduate wishing to pursue a career in the biological or environmental sciences should be familiar with the evolution and ecology of vertebrates. Vertebrates are often considered key wildlife species and are often the focus of conservation efforts. However, we use vertebrates for food, recreation, work, and medical research, and they are also pests and vectors of disease. This unit will examine the evolutionary diversity of the major groups of both extinct and extant vertebrates, and apply concepts relating to their phylogeny, morphology, physiology and behaviour. Practicals will provide an opportunity to observe and understand form, function and diversity and to develop skills in identification of Australian vertebrates.

Prerequisites: SCB112 Equivalents: NRB470 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2010 SEM-2

SCB120 PLANT AND ANIMAL PHYSIOLOGY
Regardless of which area of biology you decide to specialise in, you will need to understand the complex interactions between cells, tissues, organs and organ systems that comprise multi-cellular organisms. Although many living processes can be explained at the levels of biochemistry, biophysics and cell biology, a true understanding of complex, multicellular organisms requires integration of knowledge drawn from all of these areas, combined with the more complex physiological and structural levels you will learn about in this unit. The knowledge gained in this and other first level units provides you with the conceptual framework necessary to understand processes occurring from the cellular to the whole organism level and to higher levels of organisation.

Prerequisites: SCB112 Equivalents: NRB270 Credit points: 12 Contact hours: 4.5 per week Campus: Gardens Point Teaching period: 2010 SEM-2

SCB110 SCIENCE CONCEPTS AND GLOBAL SYSTEMS
You will undertake interdisciplinary study of the physical, geological and biological concepts relating to the origins of life; from the creation of matter and planets, to the emergence of life in all its complexity, culminating in evolution of earth ecosystems. Human influences, overlaid upon earth’s complex systems, will be examined as to their type, extent, and impact. In counterpoint, you will explore the breadth of philosophical developments underlying our search for knowledge; fundamental thoughts and ideas that span the last 2,500 years of human history. Ultimately, these concepts evolved through the development of a scientific method and we explore its workings in relation to the ongoing enterprise of human understanding.

Credit points: 12 Contact hours: 4.5 per week Campus: Gardens Point Teaching period: 2010 SEM-1

SCB112 CELLULAR BASIS OF LIFE
A study of life processes in all five groups of living organisms (bacteria, protists, fungi, plants and animals). Traditional topics in biology are integrated with recent research advances in molecular and cellular biology to provide a comprehensive foundation for later units in the medical, biotechnological and ecological sciences. The unit begins by constructing cells from the four quantitatively important groups of biological molecules (proteins, lipids, carbohydrates and nucleic acids). Molecular and evolutionary aspects of genetics are then introduced, with the great diversity of reproductive strategies found among organisms being emphasised. Finally, bioenergetics (photosynthesis and respiration) and its relevance to environmental issues is outlined.

Antirequisites: LSB118 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2010 SEM-1 and 2010 SEM-2