Mathematical Sciences

Year offered: 2011
Admissions: Yes

null

If your course rules allow, you may be able to choose to study a minor from another area of the University. Minors are sets of related units in a particular study area.

The introductory units in each minor have no prerequisites. Later units may have earlier units as prerequisites. Depending on class timetabling it may not be possible to complete all units in a University Wide Minor. Consult with your course coordinator and relevant discipline coordinators prior to undertaking interfaculty studies.

The units you complete in a University Wide Minor will appear on your academic transcript but the successful completion of a minor will only be shown if it exists as an option in your course.

Mathematical Science unit sets

Select FOUR units from the following:

- MAB101 Statistical Data Analysis 1
- MAB105 Preparatory Mathematics
- MAB120 Algebra and Calculus
- MAB121 Calculus and Differential Equations
- MAB122 Algebra and Analytic Geometry
- MAB210 Statistical Modelling 1
- MAB220 Computational Mathematics 1
- MAB233 Engineering Mathematics 3
- MAB281 Mathematics for Computer Graphics
- MAB311 Advanced Calculus
- MAB312 Linear Algebra
- MAB313 Mathematics of Finance
- MAB314 Statistical Modelling 2
- MAB315 Operations Research 2
- MAB413 Differential Equations
- MAB414 Applied Statistics 2
- MAB420 Computational Mathematics 2
- MAB422 Mathematical Modelling
- MAB461 Discrete Mathematics
- MAB480 Introduction to Scientific Computation
- MAB521 Applied Mathematics 3
- MAB522 Computational Mathematics 3
- MAB524 Statistical Inference
- MAB525 Operations Research 3A
- MAB533 Statistical Techniques
- MAB536 Time Series Analysis
- MAB613 Partial Differential Equations
- MAB623 Financial Mathematics
- MAB624 Applied Statistics 3
- MAB625 Operations Research 3B
- MAB672 Advanced Mathematical Modelling

UNIT SYNOPSES

MAB101 STATISTICAL DATA ANALYSIS 1
Experiments, observational studies, sampling, and polls; data and variables; framework for describing and manipulating probability; independence; Binomial and Normal distributions; population parameters and sample statistics; concepts of estimation and inference; standard error; confidence intervals for means and proportions; tests of hypotheses on means and proportions (one sample and two independent samples); inference using tables of counts; modelling relationships using regression analysis; model diagnosis; use of statistical software.

Antirequisites: BSB123, EFB101, MAB141, MAN101, MAB233
Assumed knowledge: Grade of at least Sound Achievement in Senior Mathematics B (or equivalent) or MAB105 is assumed knowledge.
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point

MAB105 PREPARATORY MATHEMATICS
This unit is intended to cater for the needs of students whose background in mathematics is either weak or does not reach the equivalent of Senior Mathematics B. It is intended to provide the concepts and skills needed for successful study of those units within the university which assume a background equivalent to Senior Mathematics B. This unit is incompatible with a grade of High Achievement in Senior Mathematics B (or equivalent) or MAB105 is assumed knowledge.
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
MAB120 ALGEBRA AND CALCULUS
This unit introduces and reviews the elementary concepts of function, calculus, matrices and vectors with special reference to applications in science, technology and business where appropriate. Topics covered include the algebra of complex numbers, elementary functions (polynomial, trigonometric, exponential and logarithmic) and their properties, differentiation and integration methods and principles, geometric and algebraic applications of vectors and the solution of linear systems using matrices.

Assumed knowledge: Grade of at least Sound Achievement in Senior Mathematics B (or equivalent) or MAB105 is assumed knowledge

Equivalents: MAB100, MAB125, MAB180
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1, 2011 SEM-2 and 2011 SUM

MAB121 CALCULUS AND DIFFERENTIAL EQUATIONS
Building upon the foundations established in MAB120 or Senior Maths C, this unit addresses the significant role of mathematical modelling using differential equations for the description and resolution of simple and complex problems relevant to real world situations. The formulation and solution of such problems is supported by appropriate advanced mathematical concepts used for function approximation, differentiation and integration. Undertaking this unit will allow you to develop your problem solving skills, especially in the context of advanced mathematical techniques applied to ordinary differential equations used to model real world problems. You will also gain a deeper understanding of the concepts of the derivative and the integral, and how these may be used in applied contexts.

Antirequisites: MAN121
Assumed knowledge: Grade of at least Sound Achievement in Senior Mathematics C (or equivalent) or MAB120 or MAB100 or MAB125
Equivalents: MAB111, MAB126, MAB131, MAB182
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1, 2011 SEM-2 and 2011 SUM

MAB122 ALGEBRA AND ANALYTIC GEOMETRY
Building upon the foundations established in MAB120 or Senior Maths C, this unit addresses the significant role of mathematical modelling using vectors, matrices and multivariable calculus for the description and resolution of simple and complex problems relevant in the real world. The formulation and solution of such problems is supported by appropriate advanced mathematical concepts used for function approximation, differentiation and integration. Undertaking this unit will allow you to develop your problem solving skills, especially in the context of advanced mathematical techniques applied to vectors, matrices and multivariable functions used to model real world problems.

Assumed knowledge: Grade of at least Sound Achievement in Senior Mathematics C (or equivalent) or MAB120 or MAB100 or MAB125
Equivalents: MAB112, MAB127, MAB132
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1, 2011 SEM-2 and 2011 SUM

MAB210 STATISTICAL MODELLING 1
This unit is intended for all mathematics degree students, all double degree students with mathematics, secondary education students with mathematics as a teaching area, and quantitatively-oriented students in other courses, particularly in Science, Information Technology, Engineering and areas of Business. The unit will provide you with fundamental skills and operational knowledge for all further study in statistics, and highly relevant foundations for other areas of mathematics such as mathematical modelling and operations research. The unit will also help you develop fundamental problem-solving skills in statistics and mathematics.

Prerequisites: MAB121 or MAB122
Antirequisites: MAN210
Assumed knowledge: Grade of Sound Achievement in Senior Mathematics C (or equivalent) or MAB120 is assumed knowledge. Students are advised to enrol in either MAB121 or MAB122 in the same semester if not previously completed.
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1 and 2011 SEM-2

MAB220 COMPUTATIONAL MATHEMATICS 1
Many real world problems are not solvable analytically, meaning that it is necessary to develop computational methods that can be used to solve these problems. Additionally, to be able to apply these methods to large problems, they must be implemented as algorithms in a computer language such as MATLAB. This unit addresses both the theoretical development of computational methods and their implementation in MATLAB. The aim of this unit is to provide you with the introductory concepts, computational techniques and programming skills that will allow you to solve many real world problems. It is also designed to prepare you for study in the advanced units in computational mathematics.

Antirequisites: MAN220
Assumed knowledge: Grade of at least Sound Achievement in Senior Mathematics C (or equivalent) or MAB105 and corequisite MAB120 or MAB125 or MAB100 or MAB180 if you don’t have Senior Mathematics C is assumed knowledge
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1 and 2011 SEM-2

MAB233 ENGINEERING MATHEMATICS 3
This unit will provide you with the foundation knowledge and skills to carry out a statistical data investigation including defining the problem, planning the investigation, collecting
and analysing data, and reporting conclusions in context. It will also provide you with foundation knowledge and concepts of probability, random variables and distributions for further learning in engineering.

Prerequisites: MAB131 or MAB182 or MAB121 or MAB126 or MAB127
Antirequisites: BSB123, MAB101, MAN101
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1 and 2011 SEM-2

MAB281 MATHEMATICS FOR COMPUTER GRAPHICS
Computer graphics is a rapidly growing field of the computer science industry. It has applications in computer games, virtual reality, CAD systems and geometric modelling. Fundamental to all of these applications is mathematics. Thus, to be a working professional in this area you will need a working knowledge of the basic mathematics and concepts that are central to this field. This unit is also ideal for non-specialists as it demonstrates some of the various fields of applications of mathematics in everyday life. The aim of this unit is to introduce you to the mathematics of computer graphics and relate this to the solutions of problems that arise in the many applications of computer graphics.

Assumed knowledge: Grade of at least Sound Achievement in Senior Mathematics B (or equivalent) or MAB105 is assumed knowledge.
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-2

MAB311 ADVANCED CALCULUS
This unit includes the following: polar coordinates; parametric equations; conic sections; quadric surfaces; vector-valued functions; Fourier series; functions of several variables; graphs; partial derivatives; total derivatives; extrema; Lagrange multipliers; Taylor series for multivariable functions; double and triple integrals; Green's theorems; line and surface integrals; divergence theorem; Stoke's theorem; applications.
Prerequisites: (MAB111 or MAB121) and (MAB112 or MAB122)
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1

MAB312 LINEAR ALGEBRA
This unit covers the following broad topics from linear algebra: matrix analysis; eigenvalues and eigenvectors; vector spaces; inner product spaces.
Prerequisites: (MAB111 or MAB121) and (MAB112 or MAB122)
Antirequisites: MAN312
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1

MAB313 MATHEMATICS OF FINANCE
Finance provides one of the significant areas for the application of mathematics. Understanding the fundamental principles involved will enhance your general preparation for life and provide an essential tool for those of you who intend to pursue further studies or careers in the financial area. The aim of this unit is to provide you with an introduction to the methods used in obtaining relevant solutions to financial and business problems.

Prerequisites: MAB111 or MAB121 (which can be concurrently enrolled)
Antirequisites: MAN313
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-2

MAB314 STATISTICAL MODELLING 2
This unit includes: models for stochastic processes and statistical methods, which have applications in engineering, information technology, finance, and physical and life sciences. Markov chains; random walks; branching processes; queueing processes; long-term behaviour of processes; use of generating functions; bivariate and conditional distributions; transformations of random variables; beta and gamma distributions; mixture distributions; order statistics, minimum and maximum.
Prerequisites: MAB112 and MAB210
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1

MAB315 OPERATIONS RESEARCH 2
This unit introduces the essential features of operations research methods. It develops a number of basic mathematical techniques to solve generic problems and the theoretical foundations of these techniques. Students should develop the ability to apply various operations research methods, algorithms and techniques in the solution of practical problems. Students will also look at the applications of operations research techniques to real-world problems.
Prerequisites: MAB210 and (MAB112 or MAB122)
Antirequisites: MAN315
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1

MAB413 DIFFERENTIAL EQUATIONS
Differential Equations are among the most important aspects of the theoretical developments of any branch of science. It is often the case that the formulation of mathematical models of real world problems leads to an equation in which a function and its derivatives play a major role. Such equations are examples of differential equations. This unit builds on studies of differential equations in first year and provides a framework for studying partial differential equations and other aspects of applied mathematics in later semesters.
Prerequisites: MAB311 or MAB312
Antirequisites: MAN413
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-2
MAB414 APPLIED STATISTICS 2
This unit includes: Simple linear regression (revision), multiple linear regression, making inferences from regressions, choosing a model, checking model assumptions, general linear models - analysis of covariance, ANOVA revisited, designing experiments, issues in designing experiments, analysing experimental results, further experimental designs, assumptions, and how to cope if they aren't met, simulations.
Prerequisites: MAB101 Assumed knowledge: MAB112 is recommended prior study Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-2

MAB420 COMPUTATIONAL MATHEMATICS 2
This unit provides you with the opportunity to employ a number of the skills that you have developed in the disciplines of computational mathematics and linear algebra, combining them in a coherent manner for resolving topical and relevant real world problems. You will become familiar with the methodologies for developing numerical algorithms that can be employed for either the direct solution or the iterative solution of large, sparse linear systems.
Prerequisites: MAB220 and MAB312 Antirequisites: MAN420 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-2

MAB422 MATHEMATICAL MODELLING
In this unit you will develop skills in the formulation and interpretation of mathematical models of 'real-world' problems drawn from the literature, the media and the lecturer's own research areas. You will also develop and extend your skills in the use of mathematical software to investigate solutions of some of these models. By emphasising the need to write clear mathematical arguments and to explain in logical and clear English the conclusions drawn from the mathematical models developed in the unit, you will also develop your written communication skills.
Prerequisites: MAB121 Antirequisites: MAN422 Assumed knowledge: MAB220 is recommended for prior/concurrent study for exposure to MATLAB Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-2

MAB461 DISCRETE MATHEMATICS
Discrete mathematics is playing an ever increasingly important role in society. We live in an electronic age where information security is of paramount importance, and it is discrete mathematics in the main that provides this security. In addition, many real world systems are discrete in nature and therefore lend themselves to a discrete analysis. These methods are therefore vital to the professional mathematician and useful to those with an interest in mathematics. This second level unit will provide you with an introduction to discrete and combinatorial mathematics, and give you a mathematical perspective that is different from the traditional coverage in other mathematics units. It will also provide you with valuable methods to apply in other areas of science and computer science.
Prerequisites: MAB112 or MAB122 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-2

MAB480 INTRODUCTION TO SCIENTIFIC COMPUTATION
This unit teaches students how to implement a mathematical algorithm in a modern scientific computing environment (eg Matlab). A case-study approach is used with an emphasis on writing efficient code. Also an overview of other software packages used in mathematics will be given.
Antirequisites: ITB849 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point

MAB521 APPLIED MATHEMATICS 3
This unit includes: partial differential equations such as the wave, heat and Laplace equations; special functions(gamma, delta, Bessel and error functions, Legendre polynomials); vector analysis and applications (vector algebra, vector calculus, fields, grad, div, curl, line and surface integrals, divergence theorem, Stoke’s theorem, applications); functions of a complex variable (analytic functions, contour integrals, Laurent series, residues).
Prerequisites: MAB311 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-1

MAB522 COMPUTATIONAL MATHEMATICS 3
This unit includes: deriving the basic equations that describe fluid motion; the finite volume method for solving PDEs (application to the generalised diffusion equation, cell-centred and vertex-centred schemes, handling of boundary and initial conditions); solution of systems of nonlinear equations (Newton's method, Inexact Newton methods, globally convergent methods).
Prerequisites: MAB311 and MAB420 Antirequisites: MAN522 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-1

MAB524 STATISTICAL INFERENCE
This unit includes: maximum likelihood estimation, confidence intervals and hypothesis tests, introduction to Bayesian inference, prior and posterior distributions, Bayesian inference for binomial data, Poisson count data and normal data, simulation techniques for sampling from distributions. Use of software Matlab and R.

Page 4/6
mathematical models used to unambiguously describe processes exhibiting spatial and temporal variation. There exist numerous modern important examples of such so-called continuum models and so it is essential that any practising mathematician be conversant with both the background, formulation and solution of such equations. This unit aims to develop your understanding of the construction, analysis, solution and interpretation of partial differential equation models of real-world processes.

Prerequisites: MAB311 and MAB413 Antirequisites: MAN613 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-2

MAB525 OPERATIONS RESEARCH 3A
This unit develops problem-solving skills and sharpens analytical skills. This unit introduces the technical issues involved in applying operations research principles, methods and algorithms in the solution of real-world problems.

Prerequisites: MAB315 Antirequisites: MAN525 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-1

MAB533 STATISTICAL TECHNIQUES
This unit builds on your knowledge and skills of statistical techniques and aims to provide you with an understanding and a working knowledge of some more specialised statistical techniques and their applications. Topics covered include quality management concepts and tools for statistical process control, modelling and analysis of reliability (for inanimate objects) and survival (for living entities), and multivariate techniques such as principal components analysis, discriminant analysis and cluster analysis.

Prerequisites: MAB210 and MAB414 Antirequisites: MAB523 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-1

MAB536 TIME SERIES ANALYSIS
Data in business, economics, engineering and the natural sciences often occur in the form of time series. Time Series Analysis provides models and methods for the analysis of such series of correlated observations. The ability to forecast optimally, to understand causal relationships between variables, and to analyse dynamic systems is of great practical importance. For example, optimal sales forecasts are needed for business planning, transfer function models are needed for improving the design and control of a process plant, and vector time series models are used to represent the relationships and interactions of macroeconomic variables in an economy. This unit is concerned with the building of time series models and the use of such models for practical applications such as optimal forecasting, simulation, causality analysis, and analysis of dynamic systems.

Prerequisites: MAB314 and MAB414 Antirequisites: MAN536, MAB526 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-2

MAB613 PARTIAL DIFFERENTIAL EQUATIONS
Partial differential equations are the classical foundation of mathematical models used to unambiguously describe
particular problem and implement it. This unit will build on the foundation of previous Operations Research units to develop knowledge and skills in using advanced techniques, tools and methods.

Prerequisites: MAB315
Equivalents: MAN625
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-2

MAB672 ADVANCED MATHEMATICAL MODELLING
Models are developed beginning with the description of 'real world' problems. Emphasis is on the mathematical modelling and not on the development of new mathematical techniques. The unit includes: mathematical modelling; model formulation; dimensional analysis and re-scaling; curves of pursuit; bungy jumping; modelling with systems of ordinary differential equations; phase plane methods for analysing systems of ODEs; bacterial growth in a chemostat; predator-prey models with harvesting; limit cycles; oscillations and excitable media; modelling with partial differential equations; motion of a continuum; continuity; traffic flow; aggregation of slime mould amoebae; momentum; ideal gas dynamics; quasi-linear PDEs.

Prerequisites: MAB422
Antirequisites: MAN672
Assumed knowledge: MAB311. Also recommend: MAB413
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1