Unit sets: Physical and Chemical Sciences

Year offered: 2011
Admissions: Yes

null

If your course rules allow, you may be able to choose to study a minor from another area of the University. Minors are sets of related units in a particular study area.

The introductory units in each minor have no prerequisites. Later units may have earlier units as prerequisites. Depending on class timetabling it may not be possible to complete all units in a University Wide Minor. Consult with your course coordinator and relevant discipline coordinators prior to undertaking interfaculty studies.

The units you complete in a University Wide Minor will appear on your academic transcript but the successful completion of a minor will only be shown if it exists as an option in your course.

Applied Physics unit set

Select FOUR units from the following:

PCB150 Physics 1H
PQB250 Mechanics and Electromagnetism
PQB251 Waves and Optics
PQB360 Global Energy Balance and Climate Change
PQB404 Nanotechnology and Nanoscience
PQB451 Electronics and Instrumentation
PQB460 Astrophysics 1
PQB661 Lasers and Photonics

Astrophysics unit set

PCB593 Digital Image Processing

Or

PQB360 Global Energy Balance and Climate Change

Plus select THREE units from the following:

NQB201 Planet Earth
PCB150 Physics 1H
PQB250 Mechanics and Electromagnetism
PQB460 Astrophysics 1
SCB222 Exploration of the Universe

Forensic Science unit set

Select FOUR units from the following:

PQB312 Analytical Chemistry For Scientists and Technologists
PQB423 Process Principles
PQB513 Instrumental Analysis
PQB584 Forensic Physical Evidence
SCB111 Chemistry 1
SCB121 Chemistry 2
SCB131 Experimental Chemistry
SCB384 Forensic Sciences - From Crime Scene to Court

Industrial Chemistry unit set

Select FOUR units from the following:

PQB423 Process Principles
PQB513 Instrumental Analysis
PQB525 Unit Operations
PQB623 Chemistry in Industry and Technology
SCB111 Chemistry 1
SCB121 Chemistry 2
SCB131 Experimental Chemistry

Lighting Design unit set

PCB121 Vision, Colour and Photometry
PCB122 Lighting Design
PCB123 Sustainability and Human Factors
PCB124 Lamps and Luminaires

UNIT SYNOPSIS

NQB201 PLANET EARTH
Earth Science impacts every aspect of modern life. Hence, the concepts of Earth Science are fundamental not only to the field of Geology, but also to Environmental Science, natural resource management, civil engineering and society at large. Planet Earth provides an introduction to Earth Science, including earth materials, geologic history, geological process at the Earth’s surface, and the complex interplay between the lithosphere, atmosphere, hydrosphere and biosphere through geologic time. Thus, Planet Earth is a foundation unit for further studies in Geology and
Environmental Science and also serves as a broad introduction to the world we live on.

Equivalents: NRB230 **Credit points:** 12 **Contact hours:** 4 per week **Campus:** Gardens Point **Teaching period:** 2011 SEM-2

PCB121 VISION, COLOUR AND PHOTOMETRY
This is the first unit in the Minor in Lighting and introduces the student to the nature of light, vision and the scientific interpretation and quantification of colour. Importantly the student learns the terminology used to describe and quantify different lighting situations: the meaning of luminance and illuminance, intensity and luminous flux, and the relationship between these parameters. The unit includes a significant proportion of practical work where students learn how to measure light and the above concepts are reinforced in practical situations.

Credit points: 12 **Contact hours:** 40 **Campus:** Gardens Point **Teaching period:** 2011 SEM-2

PCB122 LIGHTING DESIGN
The third unit in the Minor in Lighting looks at the principles of basic lighting design, determining the choice, number and location of lamps to achieve a particular result, and the factors that are involved in making these choices. Students will be introduced to Australian Standards for lighting in various situations and the need to ensure that these levels are reached. User-friendly lighting design programs will be available for assignments and lighting design will include commercial indoor lighting, public lighting and entertainment lighting.

Credit points: 12 **Contact hours:** 40 **Campus:** Gardens Point **Teaching period:** 2011 SEM-1

PCB123 SUSTAINABILITY AND HUMAN FACTORS
The last unit in the Minor in Lighting looks at the human factors involved in lighting; the factors such as flare and contrast that determine whether or not we like a particular light environment, what looks good and what doesn't. This unit also includes the principles and practices of daylighting and lighting controls, and touches on environmental and sustainability issues.

Credit points: 12 **Contact hours:** 40 **Campus:** Gardens Point **Teaching period:** 2011 SEM-1

PCB124 LAMPS AND LUMINAIRES
This unit introduces the student to the vast range of different lamp sources available today, including incandescents, discharge lamps and LEDs, explaining the important characteristics of each and hence providing an understanding of their different applications. The student is introduced to the concept of colour Rendering and Colour temperature of lamps. The unit also includes a look at the design of reflectors and refractors within the luminaire. The lecture material is supported by a number of practical experiments.

Credit points: 12 **Contact hours:** 40 **Campus:** Gardens Point **Teaching period:** 2011 SEM-2

PCB150 PHYSICS 1H
Professionals in the applied sciences require an understanding of the processes of making and recording measurements and an understanding of the physical principles that govern the behaviour of both the physical parameters being measured and the instrument being used to make the measurement. The aim of this unit is to introduce you to the processes of making measurements and estimating, processing and interpreting the uncertainties involved with these measurements. To enable you to understand the physical parameters being measured and also the limits of the measuring instrument; the physics of mechanics, heat, sound and light will be introduced and explained.

Credit points: 12 **Contact hours:** 5 per week **Campus:** Gardens Point **Teaching period:** 2011 SEM-1 and 2011 SEM-2

PCB593 DIGITAL IMAGE PROCESSING
This unit provides students with a basic understanding of the computer techniques used in image processing and reconstruction. Specific areas of study include the following: the structure of a digital image; image display techniques; grey scale palettes and look-up tables; Fourier transform theory; convolution theory; image processing hardware; image processing techniques, eg analysis, enhancement and restoration; spatial filtering; Fourier space filtering; methods of image reconstruction; 3D volume and surface rendering; applications of image processing in medicine, astronomy and remote sensing, etc.

Prerequisites: PCB375-2 or PCB496 or PQB250 **Credit points:** 12 **Contact hours:** 4 per week **Campus:** Gardens Point **Teaching period:** 2011 SEM-1

PQB250 MECHANICS AND ELECTROMAGNETISM
The experimental means by which we have arrived at our modern understanding of the universe is central to the scientific philosophy. Students of physics and physics related areas need to possess skills in quantitative handling, processing, communication and evaluation of data. Higher level studies in specialised areas of Physics require a familiarity with a range of fundamental topics in Physics and an ability to apply critical thinking and advanced mathematical techniques to the analysis and solution of Physical problems. This first-level unit lays the foundation for these higher level studies by introducing the fundamental topic areas of mechanics and electromagnetism.

Assumed knowledge: Senior Maths B is assumed knowledge. **Credit points:** 12 **Contact hours:** 4.5 hours per week **Campus:** Gardens Point **Teaching period:** 2011 SEM-2
PQB251 WAVES AND OPTICS
Wave phenomena are used to describe and explain many of the physical processes in the universe. Sound and light are the most commonly experienced of these and have far-reaching human applications, including their use as experimental tools for science. The study of wave phenomena has led to the development of quantum mechanics, a cornerstone of modern scientific thought. This first-level unit lays the foundation for discussion of wave phenomena in higher level studies, but will also be relevant to those not considering progressing to a Physics major but wishing to understand more of the Physical world in which we live.
Assumed knowledge: Senior Maths B is assumed knowledge. Credit points: 12 Contact hours: 4.5 hours per week Campus: Gardens Point Teaching period: 2011 SEM-2

PQB312 ANALYTICAL CHEMISTRY FOR SCIENTISTS AND TECHNOLOGISTS
This unit addresses three vital theoretical and practical elements of analytical chemistry: quality assurance in a chemical laboratory; principles of chemical sampling; common instrumental techniques. It is a generic unit designed to address the needs and skills of students enrolled in the Chemistry major as well as other majors such as Forensic Science and double degrees in with the Chemistry major. The unit builds on the analytical chemistry concepts introduced in SCB131 Experimental Chemistry. The aim of this unit is to provide students with principles of analytical chemistry, including some common instrumental techniques, which are firmly linked to the theory and practice of the discipline in a modern, working laboratory.
Prerequisites: SCB131 Equivalents: PCB414 Credit points: 12 Contact hours: 4.5 per week Campus: Gardens Point Teaching period: 2011 SEM-1 and 2011 SEM-2

PQB360 GLOBAL ENERGY BALANCE AND CLIMATE CHANGE
Modern societies are becoming increasingly aware of potential environmental problems associated with conventional energy production technologies. Application of alternative technologies is therefore increasing, with ambitious targets and plans to support research and development for reducing energy related environmental consequences. This unit is designed to offer science and engineering students an opportunity to gain awareness about the expanding field of alternative energy technologies and to understand relationships between use of energy and its impact on local and global environment.
Prerequisites: MAB121 and MAB122 Equivalents: PCB563 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-1

PQB404 NANOTECHNOLOGY AND NANOSCIENCE
Nanotechnology is the science of constructing molecular-scale devices and of their applications. Like biotechnology, it is a growth industry and has the potential to significantly affect our lives and the world in which we live. Nanotechnology is truly interdisciplinary, it draws on the strengths of all the basic sciences. The lecture component of the unit will comprise an introduction to the field of Nanotechnology and Nanoscience, with a bias towards Chemical Technology applications derived from the Physical Sciences. The laboratory component will focus on the techniques currently used to characterise and manipulate nanoscale material and the construction of functional devices from nanoscale, molecule components.
Prerequisites: SCB111 and (SCB121 or SCB113) Equivalents: PCB445 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-2

PQB423 PROCESS PRINCIPLES
This unit will provide students with a knowledge of qualitative and quantitative aspects of Process Principles. These include an overview of chemical reactions involving important processes and the skills to undertake mass and energy balances around a system whether that system be an individual industrial process, a combination of such processes or a natural phenomenon. This knowledge will also enable students to participate in the identification, quantification and solution of problems arising during the day to day operation of industrial processes.
Prerequisites: SCB131 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-2

PQB451 ELECTRONICS AND INSTRUMENTATION
Instrumentation plays an increasingly important role in the life of a scientist. This unit is designed to give the student a working knowledge in instrumentations and the principles of circuit theory and electronics that underlie instrumentation. It is offered at this stage of the program since it relies on work developed in the earlier advanced-level units and provides a basis for experimental work in later units.
Prerequisites: PCB250 or PCB250 Antirequisites: PCB361, PCB460 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-2

PQB460 ASTROPHYSICS 1
This second level unit is one of the key units in the astrophysics co-major and introduces students to most of the main aspects of astrophysics. This unit is essential as it defines the connections between the supporting units of the co-major. Students are required to use the knowledge and skills developed in first level physics, maths and natural
resource units.

Prerequisites: PQB250 or PCB250 or PCB150
Equivalents: PCB469
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-2

PQB513 INSTRUMENTAL ANALYSIS
TBA
Prerequisites: PQB312 or PCB414
Equivalents: PCB514
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1

PQB525 UNIT OPERATIONS

Having gained an understanding of mass and energy balances in PQB423 you will be able to appreciate the principles underlying the design and operation of the many individual processes, or unit operations, that together make up a large part of any full-scale industrial process. It is vital that Chemists involved in Chemical Technology understand how unit operations work so that they can interact effectively with unit operators and process engineers. An additional role of this unit is to build a knowledge base for the subsequent development of generic skills in Chemical Technology through a problem-solving exercise involving an authentic industrial process in PQB623.

Prerequisites: PQB423
Equivalents: PCB524
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1

PQB584 FORENSIC PHYSICAL EVIDENCE

This unit provides a theoretical and practical framework to introduce you to the physical evidence processing techniques of questioned documents and computer forensics and the forensic examination techniques of optical and electron microscopy. The unit will also discuss the physical and forensic structure of some common types of physical evidence (fibres, fabrics & severance, soils and physical fits) and the analytical methods used for their analysis. It is placed appropriately in the fifth semester of the course to coincide with and complement the Instrumental Analysis unit PQB513 which the core knowledge for the instrumental techniques used within the forensic analysis of various types of physical evidence.

Prerequisites: PQB312, SCB384
Antirequisites: PCB584
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1

SCB111 CHEMISTRY 1

Chemistry is the central science. It affects society as well as the individual. It is the language and principal tool of the physical sciences, the biological sciences, the health sciences and the agricultural and earth sciences. A basic knowledge of chemistry is essential to all students in these areas. Knowledge of chemistry allows a better understanding of the human body and of the environment in which we live. The aim of this unit is to introduce you to the basic concepts of general, inorganic, analytical and physical chemistry.

Antirequisites: SCB111
Credit points: 12
Contact hours: 4.5 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1 and 2011 SEM-2

SCB121 CHEMISTRY 2

Chemistry is the central science. This is a unit of fundamental importance as it covers the background and general principles that underpin understanding in many science and health related disciplines. In this unit you will be introduced to fundamental aspects of chemistry including the nature of matter, atoms, molecules and ions. From this basis you will develop an understanding of the electronic structure of atoms, chemical bonding and molecular structure as well as the fundamentals of organic chemistry (often described as the chemistry of life). The aims of this unit are to generate an understanding of the importance of chemical bonding and molecular structure and how these factors effect the properties of organic and bioinorganic molecules; and to allow recognition of, and provide an understanding of, the nature of organic functional groups and their respective reactivity.

Prerequisites: (SCB111 or PCB142)
SCB111 can be studied in the same teaching period
Antirequisites: PQB105 and SCB113
Credit points: 12
Contact hours: 4.5 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1 and 2011 SEM-2

SCB131 EXPERIMENTAL CHEMISTRY

Chemistry is the central science. A detailed study of chemistry and related disciplines requires the development of practical laboratory skills for synthesis and chemical analysis. This unit is designed specifically to develop these skills. The lectures complement the weekly practical sessions and teach the theory required to interpret experimental results. The aim of this unit is to develop a broad knowledge of, and the practical skills required for, scientific experiments in chemistry. The skills acquired in this unit are transferable to other practical sciences including medical science, biochemistry, molecular biology and pharmacy.

Prerequisites: SCB113 or PQB105 or (SCB111 and SCB121). SCB121 can be concurrently enrolled with SCB131
Credit points: 12
Campus: Gardens Point
Teaching period: 2011 SEM-2

SCB222 EXPLORATION OF THE UNIVERSE

This unit provides an introduction to optical observational astronomy; instrumentation; celestial sphere and astronomical coordinates; observations of constellations, stars, planets, clusters and other interesting celestial
objects. The theory includes: optics of telescopes; properties of light; determination of physical properties of stars; nebulae; stellar spectra and classification; historical models of the solar system; Kepler's law, gravitation; physical geology of the planets and formation of the solar system; phenomena of astronomical origin; brief introduction to stars and galaxies. This course includes practical exercises and field trips.

Credit points: 12 Contact hours: 5 per week Campus: Gardens Point Teaching period: 2011 SEM-2

SCB384 FORENSIC SCIENCES - FROM CRIME SCENE TO COURT
This unit provides an introduction to two fundamental areas in forensic science, crime scenes and justice. Mock crime scenes involving real life scenarios are used to provide hands-on training on crime scene management and examination protocols. The principles for forensic examination of crime scenes involving fire, explosion, murder, etc, are introduced through lectures, workshops and practical exercises. Also an overview of the techniques used in forensic photography, fingerprinting as well as Legal procedures at court is presented. This unit is provided by professional forensic practitioners with practical real life experience being transferred to new generations. This head start provides a unique advantage for a strong career in forensics.

Credit points: 12 Contact hours: 4.5 per week Campus: Gardens Point Teaching period: 2011 SEM-1