Bachelor of Technology Innovation (Ecology) (ST50)

Year offered: 2011
Admissions: Yes
CRICOS code: 070694G
Course duration (full-time): 4 years
Domestic Fees (indicative): 2011: CSP $2,178 (indicative) per semester
International Fees (indicative): 2011: $12,250 (indicative) per semester
Domestic Entry: February
International Entry: February and July
QTAC code: 418311
Past cut-off: 76
Past OP cut-off: 12
OP Guarantee: Yes
Assumed knowledge: English (4, SA); Maths B (4, SA) and Chemistry (4,SA)
Preparatory studies: For information on acquiring assumed knowledge visit http://www.qut.edu.au/assumed-knowledge
Total credit points: 384
Standard credit points per full-time semester: 96
Course coordinator: Associate Professor Chris Collet
Campus: Gardens Point

Why Choose This Course
If you like to work in a dynamic world of translating discovery and creativity into commercial products, meeting people, and working in a high-powered team environment to build money-making enterprises, then this course is for you. The Bachelor of Technology Innovation will allow a rapid entry into the high-flying world of commercialisation and technology transfer. This new degree builds upon the successful Bachelor of Biotechnology Innovation which has seen graduates realise outstanding job outcomes, often successfully competing against graduates with PhDs and MBAs.

Professional Recognition
Professional recognition is achieved through membership of a scientific society, for example, the Ecological Society of Australia (ESA) or the Australian Wildlife Management Society (AWMS) and participation in its meetings and professional activities.

Your Course
Year 1
You will be able to choose subjects from across a range of science and technology areas to help you define your choice of disciplinary major. The introductory core studies will provide you with a solid foundation in your chosen disciplinary skills and build the basis for future studies.

Year 2
You will be introduced to advanced theoretical concepts and practical skills that serve to build your expertise in the science and technology disciplines. A thorough understanding of science and technology theory and practice is necessary to understand, evaluate and communicate aspects of innovation to the business world.

Year 3
In third year, you will complete your science and technology disciplinary advanced studies and take basic and advanced business units that encompass the business of innovation, intellectual property law and professional skills development. Through the action learning framework of the Student Enterprise Scheme, professional skills development will concentrate on communication and team-building skills. These exercises will help prepare you for industry-based consultancy-style projects and extra-curricular networking events and an industry career.

Year 4
You will undertake integrative business units that develop the entrepreneurial mindset needed for a career in innovation commercialisation. You will further develop your professional skills through networking events. Student teams will source an industry-based consultancy-style project that will serve to provide real world experience and ready you for your future career.

Ecology Major Course Structure

<table>
<thead>
<tr>
<th>Year 1, Semester 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCB110</td>
</tr>
<tr>
<td>SCB111</td>
</tr>
<tr>
<td>SCB112</td>
</tr>
<tr>
<td>MAB101</td>
</tr>
<tr>
<td>MAB105</td>
</tr>
<tr>
<td>MAB121</td>
</tr>
<tr>
<td>MAB120</td>
</tr>
</tbody>
</table>

NOTE: Students with a Sound Achievement in Maths B and NOT wishing to major in Mathematics or Physics should enrol in MAB101. Students without a Sound Achievement (4 semesters) in Maths B should enrol in MAB105. Students with a Sound Achievement in Maths C and wishing to major in Mathematics or Physics should enrol in MAB121.
Students without a Sound Achievement in Maths C and wishing to major in Mathematics or Physics should enrol in MAB120

Year 1, Semester 2
- NQB201 Planet Earth
- NQB202 History of Life on Earth
- SCB120 Plant and Animal Physiology
- SCB121 Chemistry 2
- SCB122 Cell and Molecular Biology
- SCB123 Physical Science Applications

Year 2, Semester 1
- NQB321 Ecology
- NQB302 Earth Surface Systems
- NQB322 Invertebrate Biology
- NQB323 Plant Biology
- NQB322 Invertebrate Biology
- NQB323 Plant Biology

Year 2, Semester 2
- NQB421 Experimental Design
- NQB422 Genetics and Evolution
- NQB423 Vertebrate Biology

Year 3, Semester 1
- BSB115 Management
- NQB521 Population Genetics and Molecular Ecology
- NQB523 Population Management
- STB551 Engaging with the Innovation Industry

Year 3, Semester 2
- BSB126 Marketing
- MGB223 Entrepreneurship and Innovation
- NQB622 Conservation Biology
- NQB623 Ecological Systems

Year 4, Semester 1
- AMB240 Marketing Planning and Management
- LWS007 Introduction To Intellectual Property Law
- MGB324 Managing Business Growth
- STB709-1 Innovation and Commercialisation Project

Year 4, Semester 2
- BSB311 Innovation Commercialisation Strategies
- MGB225 Intercultural Communication and Negotiation Skills
- STB709-2 Innovation and Commercialisation Project

UNIT SYNOPSES

AMB240 MARKETING PLANNING AND MANAGEMENT
This unit extends the student's knowledge of the fundamental marketing concepts and theories introduced in the Faculty Core unit in Marketing, by adding further breadth and depth of knowledge of marketing and developing skills in the application of this knowledge to marketing planning and management within the business environment. Emphasis is on the role of the marketing manager at the product management level in undertaking analysis, planning, implementation and control of marketing activities.

Prerequisites: BSB126 or CTB126
Equivalents: AMX240, CTB240
Credit points: 12
Contact hours: 3 per week
Campus: Gardens Point and Caboolture
Teaching period: 2011 SEM-1 and 2011 SEM-2

BSB115 MANAGEMENT
The unit provides an introduction to the theories and practice of management and organisations. Emphasis is on the conceptual and people skills that are needed in all areas of management and in all areas of organisational life. The unit acknowledges that organisations exist in an increasingly international environment where the emphasis will be on knowledge, the ability to learn, to change and to innovate. Organisations are viewed from individual, group, corporate and external environmental perspectives.

Antirequisites: BSD115
Equivalents: BSX115, CTB115
Credit points: 12
Contact hours: 3 per week
BSB126 MARKETING
This introductory subject examines the role and importance of marketing to the contemporary organisation. Emphasis is placed on understanding the basic principles and practices of marketing such as the marketing concept, market segmentation, management information systems and consumer behaviour. The unit explores the various elements of the marketing mix, with special reference to product, price, distribution, and promotion, including advertising and public relations. By way of introduction only, key issues relating to services marketing, e-marketing and strategic marketing are also canvassed.

Antirequisites: BSB116, BSD126 Equivalents: BSX126, CTB126 Credit points: 12 Contact hours: 4 per week
Campus: Gardens Point and Caboolture Teaching period: 2011 SEM-1, 2011 SEM-2 and 2011 SUM

BSB311 INNOVATION COMMERCIALISATION STRATEGIES
Students study strategies and approaches used in industry and government organisations for the research, development and commercialisation of biotechnology innovations. The unit offers the opportunity to read widely as well as in depth about the commercialisation of molecular biology and biotechnology research. Theoretical concepts are integrated with prepared case studies prior to guest speaker seminars.

Prerequisites: MGB223 or LSP127 Credit points: 12 Contact hours: 3 per week
Campus: Gardens Point and Caboolture Teaching period: 2011 SEM-2

LWS007 INTRODUCTION TO INTELLECTUAL PROPERTY LAW
Intellectual property protection is undoubtedly of paramount importance in the research, development and commercialisation of emerging technologies. Managers and researchers need to be aware of the different types of property that can be protected and how the property needs to be protected. There have also been significant developments in the field of intellectual property law in recent years. The concepts taught in Introduction to Intellectual Property Law are of significant relevance to persons intending to practice in the emerging fields of science.

Credit points: 12 Contact hours: 3 per week
Campus: Gardens Point Teaching period: 2011 SEM-2

MAB101 STATISTICAL DATA ANALYSIS 1
Experiments, observational studies, sampling, and polls; data and variables; framework for describing and manipulating probability; independence; Binomial and Normal distributions; population parameters and sample statistics; concepts of estimation and inference; standard error; confidence intervals for means and proportions; tests of hypotheses on means and proportions (one sample and two independent samples); inference using tables of counts; modelling relationships using regression analysis; model diagnosis; use of statistical software.

Antirequisites: BSB123, EFB101, MAB141, MAN101, MAB233
Assumed knowledge: Grade of at least Sound Achievement in Senior Mathematics B (or equivalent) or MAB105 is assumed knowledge.

Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point

MAB105 PREPARATORY MATHEMATICS
This unit is intended to cater for the needs of students whose background in mathematics is either weak or does not reach the equivalent of Senior Mathematics B. It is intended to provide the concepts and skills needed for successful study of those units within the university which assume a background equivalent to Senior Mathematics B. This unit is incompatible with a grade of High Achievement in Senior Mathematics B. The aim of this unit is to develop your mathematical skills in and understanding of algebra, functions and graphing, differential and integral calculus of one variable and to interpret and solve simple, real world problems using these skills.

Assumed knowledge: Year 10 Level 6 Mathematics is assumed knowledge.

Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1 and 2011 SEM-2

MAB120 ALGEBRA AND CALCULUS
This unit introduces and reviews the elementary concepts of function, calculus, matrices and vectors with special reference to applications in science, technology and business where appropriate. Topics covered include the algebra of complex numbers, elementary functions (polynomial, trigonometric, exponential and logarithmic) and their properties, differentiation and integration methods and principles, geometric and algebraic applications of vectors and the solution of linear systems using matrices.

Antirequisites: MAN110
Assumed knowledge: Grade of at least Sound Achievement in Senior Mathematics B (or equivalent) or MAB105 is assumed knowledge.

Equivalents: MAB100, MAB125, MAB180
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1, 2011 SEM-2 and 2011 SUM

MAB121 CALCULUS AND DIFFERENTIAL EQUATIONS
Building upon the foundations established in MAB120 or Senior Maths C, this unit addresses the significant role of mathematical modelling using differential equations for the description and resolution of simple and complex problems.
relevant to real world situations. The formulation and solution of such problems is supported by appropriate advanced mathematical concepts used for function approximation, differentiation and integration. Undertaking this unit will allow you to develop your problem solving skills, especially in the context of advanced mathematical techniques applied to ordinary differential equations used to model real world problems. You will also gain a deeper understanding of the concepts of the derivative and the integral, and how these may be used in applied contexts.

Antirequisites: MAN121 **Assumed knowledge**: Grade of at least Sound Achievement in Senior Mathematics C (or equivalent) or MAB120 or MAB100 or MAB125 **Equivalents**: MAB111, MAB126, MAB131, MAB182 **Credit points**: 12 **Contact hours**: 4 per week **Campus**: Gardens Point **Teaching period**: 2011 SEM-1, 2011 SEM-2 and 2011 SUM

MGB223 ENTREPRENEURSHIP AND INNOVATION

This unit introduces students to the nature and characteristics of entrepreneurship and innovation and explores the inter-relationship between the two within contemporary economies from managerial perspective. Learning will be directed towards developing the theoretical and applied knowledge, skills, and attitudes that will support and enhance innovation and enterprise creation activity, through the development of a business plan. The unit is designed for those individuals interested in creating a new venture or working in industries as employees of venture owners or those that serve this sector. Students will have opportunity to build a comprehensive plan of their business concept.

Prerequisites: BSB115 or CTB115 **Equivalents**: CTB223, MGX223 **Credit points**: 12 **Contact hours**: 3 per week **Campus**: Gardens Point and Caboolture **Teaching period**: 2011 SEM-1 and 2011 SEM-2

MGB225 INTERCULTURAL COMMUNICATION AND NEGOTIATION SKILLS

The course develops students' abilities to identify and resolve problems in cross-cultural communication or negotiation situations where cultural differences have created misunderstandings or undesirable or unexpected outcomes. It first explores the concept of 'national culture' by considering the work of major theorists of cultural value dimensions - from Hall to Schwartz. Students are encouraged to analyse communication/negotiation process issues in terms of these value dimensions and to practise managing the process of communication/negotiation to improve their outcomes.

Prerequisites: BSB115, CTB115, BSB119 or BSB124 **Antirequisites**: MGB312 **Equivalents**: IBB205, MGX225 **Credit points**: 12 **Contact hours**: 3 **Campus**: Gardens Point and Caboolture **Teaching period**: 2011 SEM-1 and 2011 SEM-2

MGB324 MANAGING BUSINESS GROWTH

This unit is designed to provide skills in the analysis, solutions and implementation of the general management issues that SME owners have to manage in their growing operations. The unit brings together the different functional aspects of managing an established SME and how they are best managed from the owner's (general manager's) point of view. It also provides opportunity to bring students into contact with real world SME owners and their venture management issues.

Prerequisites: MGB223 **Equivalents**: MGB218, MGX324 **Credit points**: 12 **Contact hours**: 3 **Campus**: Gardens Point and Caboolture **Teaching period**: 2011 SEM-1

NQB201 PLANET EARTH

Earth Science impacts every aspect of modern life. Hence, the concepts of Earth Science are fundamental not only to the field of Geology, but also to Environmental Science, natural resource management, civil engineering and society at large. Planet Earth provides an introduction to Earth Science, including earth materials, geologic history, geological process at the Earth's surface, and the complex interplay between the lithosphere, atmosphere, hydrosphere and biosphere through geologic time. Thus, Planet Earth is a foundation unit for further studies in Geology and Environmental Science and also serves as a broad introduction to the world we live on.

Equivalents: NRB230 **Credit points**: 12 **Contact hours**: 4 per week **Campus**: Gardens Point **Teaching period**: 2011 SEM-2

NQB202 HISTORY OF LIFE ON EARTH

This unit aims to provide you with an understanding of the processes of evolution and the changing environmental conditions through time that influenced the patterns of the evolution of life on this planet. The unit will provide you with practical experience in fossil plant and animal identification, classification and morphological interpretation. It will also enable you to apply palaeontological information to interpret the evolutionary history of higher taxa and the changing ancient depositional environments through time.

Equivalents: NRB240 **Credit points**: 12 **Contact hours**: 4 per week **Campus**: Gardens Point **Teaching period**: 2011 SEM-2

NQB302 EARTH SURFACE SYSTEMS

Understanding long and short term climate and environmental change is now recognised as crucial to the interpretation of our biotic, geomorphic and cultural landscapes. To fully understand environment change it is important to recognise the interconnectedness between the atmosphere, hydrosphere, lithosphere, biosphere and humanity’s place within these spheres over various
temporal and spatial scales. Developing knowledge of past and present climate change and landscaping processes helps to predict future process pathways for natural resource management, civil engineering, risk analysis, and impact assessment in the context of both natural and anthropogenic induced change.

Assumed knowledge: NQB201 is assumed knowledge.

Equivalents: NRB301
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1

NQB321 ECOLOGY
Ecology is the study of the factors that influence the distribution and abundance of organisms. Ecology deals with basic properties of individuals and the emergent properties of collections of individuals that form populations and the dynamics of these populations and their interactions with populations of other species. An understanding of basic ecological principles is central to managing species and ecosystems. This unit provides a broad theoretical background in the major concepts of plant and animal ecology. It serves the dual role of providing a thorough grounding in ecology for students from all faculties; and laying the conceptual foundation for later subjects in the ecology and environmental science.

Prerequisites: SCB110 or SCB112
Equivalents: NRB311
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1

NQB322 INVERTEBRATE BIOLOGY
Anyone pursuing a career as an ecologist, environmental biologist, or teacher needs to be familiar with invertebrates, including their diversity and how they function. Because approximately 90% of all invertebrates are arthropods, this unit focuses on this dominant phylum, which includes all the animals with jointed exoskeletons (the insects, prawns and crabs, spiders, millipedes and more). The aim is to provide you with an overview of arthropod diversity, structure and function, as a basis for exploring the role of arthropods in natural and human-modified systems.

Equivalents: NRB370
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1

NQB323 PLANT BIOLOGY
This unit will provide an understanding and appreciation of plants by taking an evolutionary approach to the study of major plant groups. Content includes life cycles, morphology, adaptations for survival in varied environments, economic and ecological aspects of various groups as they relate to humans, phylogeny and diversity of major groups. This unit will encourage careful observation, curiosity and thinking about plants. The practicals will provide an opportunity to observe and understand form, function and diversity and will emphasise development of skills in plant systematics and identification, with special emphasis on Australian flora.

Prerequisites: SCB112
Equivalents: NRB371
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1

NQB421 EXPERIMENTAL DESIGN
This unit deals with the theory and practice of experimental design and the quantitative approaches used for the investigation of ecological and environmental questions discussed in the prerequisite unit Ecology and developed in subsequent units in the ecology and environmental science majors.

The aims of this unit are to to provide an introduction to the logic of experimentation and experimental design; build a practical extension on the theoretical basis of statistics obtained in other units using experimental situations commonly met in ecology and environmental science; and apply methods used to quantify the ecological attributes of populations and communities in experimental field situations.

Prerequisites: MAB101 or MAB104 or MAB105 , and NQB321 or NRB311
Equivalents: NRB412
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-2

NQB422 GENETICS AND EVOLUTION
A detailed understanding of the principles of genetics is required to fully comprehend modern developments in ecology and evolutionary theory. These principles will be taken forward to develop a clear understanding of the mechanisms and processes that drive evolution in natural populations. The unit provides the foundation for further studies in population and conservation biology. The aim of the unit is to provide a detailed understanding of the principles of genetics and their application to studies of evolution and ecology.

Prerequisites: SCB112
Equivalents: NRB410
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-2

NQB423 VERTEBRATE BIOLOGY
This unit provides background and details on the diversity and evolution of vertebrates. It is therefore an important unit of study for any graduate wishing to pursue a career that requires an understanding of the earth's biological diversity. The unit complements other advanced units dealing with animal and plant diversity, and the ecology of these groups. The aim of this unit is for you to gain a deeper understanding of the evolution of vertebrate groups, vertebrate taxonomy, physiology and behaviour.

Prerequisites: SCB112
Equivalents: NRB470
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-2
NQB521 POPULATION GENETICS AND MOLECULAR ECOLOGY
This unit is an extension of NQB422 Genetics and Evolution. Topics include the genetic structure of populations and processes of evolutionary change; natural selection, inbreeding and adaptation, species and speciation theory; ecological genetics; the genetics of behaviour.
Prerequisites: NQB422 Antirequisites: NRB510
Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-1

NQB523 POPULATION MANAGEMENT
This unit develops the theoretical treatment of populations as a unit of study and integrates the content of previous ecology units into approaches for the management of biological populations. The unit focuses on those interactions that are most relevant to pest control, but the unit is also of fundamental importance to harvesting and conservation biology.
Prerequisites: NQB321, NQB421 Antirequisites: NRB511
Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-1

NQB622 CONSERVATION BIOLOGY
Conservation Biology is the application of ecological theory and principles to the problem of the maintenance of viable populations of rare, threatened or endangered species, or ecological systems. The unit integrates ecological and genetic material covered in earlier units to provide an understanding of factors that enable the maintenance or enhancement of populations. The unit examines biodiversity and its determinants, the process of extinction, population viability analysis and the diagnosis and treatment of population declines, habitat fragmentation, metapopulation processes and the design of natural reserves, and conservation genetics.
Prerequisites: NQB321 or NRB311, and NQB422 or NRB410 Equivalents: NRB611
Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-2

NQB623 ECOLOGICAL SYSTEMS
The science of ecology examines the distribution and abundance of organisms at a number of organisational levels from individuals to landscapes. At each of these levels there are separate and distinct attributes that require investigation and explanation. One important level of organisation is the ecosystem. An essential component of ecological studies is to examine these ecological systems and how they are shaped by the interaction between their constituent species and the physical environment. This unit builds on aspects animal and plant diversity and ecology covered in previous units to examine how the interrelationships between key physical, ecological, biological and geological processes shape ecological systems. The aim of this unit is to develop an understanding of the structure and function of terrestrial and aquatic ecosystems, and especially the processes that have shaped Australia's major ecological systems.
Prerequisites: NQB321 or NRB311 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-2

SCB110 SCIENCE CONCEPTS AND GLOBAL SYSTEMS
You will undertake interdisciplinary study of the physical, geological and biological concepts relating to the origins of life: from the creation of matter and planets, to the emergence of life in all its complexity, culminating in evolution of earth ecosystems. Human influences, overlaid upon earth’s complex systems, will be examined as to their type, extent, and impact. In counterpoint, you will explore the breadth of philosophical developments underlying our search for knowledge; fundamental thoughts and ideas that span the last 2,500 years of human history. Ultimately, these concepts evolved through the development of a scientific method and we explore its workings in relation to the ongoing enterprise of human understanding.
Credit points: 12 Contact hours: 4.5 per week Campus: Gardens Point Teaching period: 2011 SEM-1

SCB111 CHEMISTRY 1
Chemistry is the central science. It affects society as well as the individual. It is the language and principal tool of the physical sciences, the biological sciences, the health sciences and the agricultural and earth sciences. A basic knowledge of chemistry is essential to all students in these areas. Knowledge of chemistry allows a better understanding of the human body and of the environment in which we live. The aim of this unit is to introduce you to the basic concepts of general, inorganic, analytical and physical chemistry.
Antirequisites: SCB113 Credit points: 12 Contact hours: 4.5 per week Campus: Gardens Point Teaching period: 2011 SEM-1 and 2011 SEM-2

SCB112 CELLULAR BASIS OF LIFE
Scientists from all disciplines need an appreciation and a broad overview of the characteristics and functioning of the five groups of living organisms (bacteria, protists, fungi, plants and animals), and their interactions with the inanimate world. SCB112 Cellular Basis of Life is a first semester unit that is essential for many students undertaking courses requiring biological knowledge. Through integrated lecture and laboratory classes, this unit provides you with a foundation for later more advanced studies in your course or major (eg such as medical science, biomedical science, pharmacy, optometry,
biochemistry, biotechnology, microbiology, geosciences, ecology, business and education among others). The aim of this unit is to introduce you to the wide diversity of living organisms while emphasising the unity of life processes at the cellular, biochemical and biophysical levels.

Antirequisites: LQB182, LSB118 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-1 and 2011 SEM-2

SCB120 PLANT AND ANIMAL PHYSIOLOGY

Regardless of which area of biology you decide to specialise in, you will need to understand the complex interactions between cells, tissues, organs and organ systems that comprise multi-cellular organisms. Although many living processes can be explained at the levels of biochemistry, biophysics and cell biology, a true understanding of complex, multicellular organisms requires integration of knowledge drawn from all of these areas, combined with the more complex physiological and structural levels you will learn about in this unit. The knowledge gained in this and other first level units provides you with the conceptual framework necessary to understand processes occurring from the cellular to the whole organism level and to higher levels of organisation.

Prerequisites: SCB112 Equivalents: NRB270 Credit points: 12 Contact hours: 4.5 per week Campus: Gardens Point Teaching period: 2011 SEM-2

SCB121 CHEMISTRY 2

Chemistry is the central science. This is a unit of fundamental importance as it covers the background and general principles that underpin understanding in many science and health related disciplines. In this unit you will be introduced to fundamental aspects of chemistry including the nature of matter, atoms, molecules and ions. From this basis you will develop an understanding of the electronic structure of atoms, chemical bonding and molecular structure as well as the fundamentals of organic chemistry (often described as the chemistry of life). The aims of this unit are to generate an understanding of the importance of chemical bonding and molecular structure and how these factors effect the properties of organic and bioinorganic molecules; and to allow recognition of, and provide an understanding of, the nature of organic functional groups and their respective reactivity.

Prerequisites: (SCB111 or PCB142) . SCB111 can be studied in the same teaching period Antirequisites: PQB105 and SCB113 Credit points: 12 Contact hours: 4.5 per week Campus: Gardens Point Teaching period: 2011 SEM-1 and 2011 SEM-2

SCB122 CELL AND MOLECULAR BIOLOGY

SCB122 Cell and Molecular Biology 1 equips students with a comprehensive understanding the molecular basis of the cell. This unit expands on the basic principles and concepts relating to cell structure, function, perpetuation and specialisation introduced in SCB112 and introduces students to fundamental molecular mechanisms central to the organisation of the cell. Students will be shown how macromolecular interactions are crucial to information flow and heredity. Students are taught the relationships between chromosomes, genes and cellular function and ultimately how these may determine an organism’s phenotype. This unit underpins cell biology and molecular biology units that are offered in second year Life Science units. SCB122 is also ideal for interfaculty students (eg Education, Business, Arts) who will undertake no further life science studies.

Prerequisites: SCB112, SCB112 can be studied in the same teaching period. Antirequisites: LSB238 Credit points: 12 Contact hours: 4.5 per week Campus: Gardens Point Teaching period: 2011 SEM-2

SCB123 PHYSICAL SCIENCE APPLICATIONS

Physics principles underpin all of the sciences and ‘new technologies’. This unit adopts an investigative team-based approach to provide students with an appreciation of fundamental concepts in physical science, together with experience in the application of these concepts to a range of ‘real world’ problems. The unit should be taken in the first year of study as the fundamental principles introduced here will be built upon in later units in the context of each science student’s major discipline area. Employers in cutting-edge industries expect science graduates to have effective strategies for problem solving, skills for collaborative work and scientific communication and research skills. This unit aims to develop these skills by applying the fundamental concepts of physical science to problems in a team environment.

Credit points: 12 Contact hours: 4.5 per week Campus: Gardens Point Teaching period: 2011 SEM-2

STB551 ENGAGING WITH THE INNOVATION INDUSTRY

Working in the innovation industry requires a suite of skills beyond an in depth technical and/or business knowledge of a disciplinary area. Successful facilitators of innovation exchange require well developed professional portfolios and high level capabilities in the generic or soft skills including communication (written, oral and aural), thinking processes occurring from the cellular to the whole organism level and to higher levels of organisation.

Prerequisites: (SCB111 or PCB142) . SCB111 can be studied in the same teaching period Antirequisites: PQB105 and SCB113 Credit points: 12 Contact hours: 4.5 per week Campus: Gardens Point Teaching period: 2011 SEM-1

STB709 INNOVATION AND COMMERCIALISATION PROJECT
The Innovation and Commercialisation Project is a capstone unit that provides a concrete opportunity for students to consolidate and contextualise the knowledge and skills they have acquired in the course and apply them to a substantial project. The unit serves to provide work experience and link University study with the professional practice of innovation commercialisation context. New venture areas of industry, focussed as they often are on emergent technologies and the commercialisation of innovation, require graduates capable of high levels of critical thinking and evaluation coupled with a sound technical and business knowledge and skills base of relevance to the particular innovation context. The capacity to conduct rigorous analysis into the research, development and commercialisation of products and processes is a fundamental aspect of converting real-world science and technology into products for the global marketplace.

Prerequisites: STB551 **Credit points:** 12 **Teaching period:** 2011 SEM-1, 2011 SEM-2 and 2011 SUM

STB709 INNOVATION AND COMMERCIALISATION PROJECT

The Innovation and Commercialisation Project is a capstone unit that provides a concrete opportunity for students to consolidate and contextualise the knowledge and skills they have acquired in the course and apply them to a substantial project. The unit serves to provide work experience and link University study with the professional practice of innovation commercialisation context. New venture areas of industry, focussed as they often are on emergent technologies and the commercialisation of innovation, require graduates capable of high levels of critical thinking and evaluation coupled with a sound technical and business knowledge and skills base of relevance to the particular innovation context. The capacity to conduct rigorous analysis into the research, development and commercialisation of products and processes is a fundamental aspect of converting real-world science and technology into products for the global marketplace.

Prerequisites: STB551 **Credit points:** 12 **Teaching period:** 2011 SEM-1, 2011 SEM-2 and 2011 SUM