Bachelor of Technology Innovation (Physics) (ST50)

Year offered: 2010
Admissions: Yes
CRICOS code: 070694G
Course duration (full-time): 4 years
Domestic fees (indicative): 2010: CSP $2,125 (indicative) per semester
International Fees (indicative): 2010: $11,750 (indicative) per semester
Domestic Entry: February
International Entry: February and July
Past rank cut-off: 77
Past OP cut-off: 12
Assumed knowledge: English (4, SA) and Maths B (4, SA)
Preparatory studies: For information on acquiring assumed knowledge visit http://www.studentservices.qut.edu.au/apply/ug/info/knowledge.jsp
Total credit points: 384
Standard credit points per full-time semester: 96
Course coordinator: Associate Professor Chris Collet
Campus: Gardens Point

Overview
Physics is the science discipline dealing with the natural laws and processes, with the states and properties of matter and energy. Physics also underlies many of the recent advances in information technology, medicine and biotechnology and thus provides a rich supply of innovation that feeds into commercial products.

Career Outcomes
Graduates can build careers in the world of commercialisation and technology transfer of research innovation and complex emerging technologies pertaining to their specific discipline and beyond. Graduates could pursue careers in all aspects of the new product development continuum including business development officers, venture capital associates, investment analysts, commercialisation managers, technology transfer officers, intellectual property analysts, policy development officers and, of course, research scientists.

Professional Recognition
Graduates are eligible for membership of the Australian Institute of Physics (AIP).

Physics Major Course Structure

Year 1 Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCB110</td>
<td>Science Concepts and Global Systems</td>
</tr>
<tr>
<td>SCB111</td>
<td>Chemistry 1</td>
</tr>
<tr>
<td>SCB112</td>
<td>Cellular Basis of Life</td>
</tr>
</tbody>
</table>

Plus ONE from the following four units:

- MAB101 Statistical Data Analysis 1
- MAB105 Preparatory Mathematics
- MAB120 Algebra and Calculus
- MAB121 Calculus and Differential Equations

NOTE: Students with a Sound Achievement in Maths B and NOT wishing to major in Mathematics or Physics should enrol in MAB101
Students with a Sound Achievement (4 semesters) in Maths B should enrol in MAB105
Students with a Sound Achievement in Maths C and wishing to major in Mathematics or Physics should enrol in MAB121
Students without a Sound Achievement in Maths C and wishing to major in Mathematics or Physics should enrol in MAB120

Year 2 Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAB122</td>
<td>Algebra and Analytic Geometry</td>
</tr>
<tr>
<td>PQB250</td>
<td>Mechanics and Electromagnetism</td>
</tr>
<tr>
<td>PQB251</td>
<td>Waves and Optics</td>
</tr>
<tr>
<td>MAB121</td>
<td>Calculus and Differential Equations</td>
</tr>
<tr>
<td>MAB220</td>
<td>Computational Mathematics 1</td>
</tr>
</tbody>
</table>

Plus TWO Advanced units offered by the Faculty of Science and Technology

Relevant Unit Options List for Year 2, Semester 1:

- PCB593 Digital Image Processing
- PQB360 Global Energy Balance and Climate Change

Year 2 Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PQB350</td>
<td>Thermodynamics of Solids and Gases</td>
</tr>
<tr>
<td>PQB450</td>
<td>Energy, Fields and Radiation</td>
</tr>
<tr>
<td>PQB451</td>
<td>Electronics and Instrumentation</td>
</tr>
</tbody>
</table>

Plus TWO Advanced units offered by the Faculty of Science and Technology

Relevant Unit Options List for Year 2, Semester 2:

- PQB460 Astrophysics 1

Year 3 Semester 1
BSB115 Management
PQB550 Quantum and Condensed Matter Physics
PQB551 Physical Analytical Techniques
STB551 Engaging with the Innovation Industry

Year 3 Semester 2
BSB126 Marketing
MGB223 Entrepreneurship and Innovation
PQB650 Advanced Theoretical Physics
PQB651 Experimental Physics

Year 4 Semester 1
AMB240 Marketing Planning and Management
LWS007 Introduction To Intellectual Property Law
MGB324 Managing Business Growth
STB709-1 Innovation and Commercialisation Project

Year 4 Semester 2
BSB311 Innovation Commercialisation Strategies
MGB225 Intercultural Communication and Negotiation Skills
STB709-2 Innovation and Commercialisation Project
STB709-3 Innovation and Commercialisation Project

UNIT SYNOPSES

AMB240 MARKETING PLANNING AND MANAGEMENT
This unit extends the student’s knowledge of the fundamental marketing concepts and theories introduced in the Faculty Core unit in Marketing, by adding further breadth and depth of knowledge of marketing and developing skills in the application of this knowledge to marketing planning and management within the business environment. Emphasis is on the role of the marketing manager at the product management level in undertaking analysis, planning, implementation and control of marketing activities.

Prerequisites: BSB126 or CTB126
Equivalents: CTB240
Credit points: 12
Contact hours: 3 per week
Campus: Gardens Point and Caboolture
Teaching period: 2010 SEM-1 and 2010 SEM-2

BSB115 MANAGEMENT
The unit provides an introduction to the theories and practice of management and organisations. Emphasis is on the conceptual and people skills that are needed in all areas of management and in all areas of organisational life. The unit acknowledges that organisations exist in an increasingly international environment where the emphasis will be on knowledge, the ability to learn, to change and to innovate. Organisations are viewed from individual, group, corporate and external environmental perspectives.

Antirequisites: BSD115
Equivalents: CTB115
Credit points: 12
Contact hours: 3 per week
Campus: Gardens Point and Caboolture
Teaching period: 2010 SEM-1 and 2010 SEM-2 and 2010 SUM

BSB126 MARKETING
This introductory subject examines the role and importance of marketing to the contemporary organisation. Emphasis is placed on understanding the basic principles and practices of marketing such as the marketing concept, market segmentation, management information systems and consumer behaviour. The unit explores the various elements of the marketing mix, with special reference to product, price, distribution, and promotion, including advertising and public relations. By way of introduction only, key issues relating to services marketing, e-marketing and strategic marketing are also canvassed.

Antirequisites: BSB116
Equivalents: CTB126
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point and Caboolture
Teaching period: 2010 SEM-1, 2010 SEM-2 and 2010 SUM

BSB311 INNOVATION COMMERCIALISATION STRATEGIES
Students study strategies and approaches used in industry and government organisations for the research, development and commercialisation of biotechnology innovations. The unit offers the opportunity to read widely as well as in depth about the commercialisation of molecular biology and biotechnology research. Theoretical concepts are integrated with prepared case studies prior to guest speaker seminars.

Prerequisites: BSB310 or MGB223
Credit points: 12
Contact hours: 3 per week
Campus: Gardens Point
Teaching period: 2010 SEM-2

LWS007 INTRODUCTION TO INTELLECTUAL PROPERTY LAW
Intellectual property protection is undoubtedly of paramount importance in the research, development and commercialisation of emerging technologies. Managers and researchers need to be aware of the different types of property that can be protected and how the property needs to be protected. There have also been significant developments in the field of intellectual property law in recent years. The concepts taught in Introduction to Intellectual Property Law are of significant relevance to persons intending to practice in the emerging fields of science.

Credit points: 12
Contact hours: 3 per week
Campus: Gardens Point
Teaching period: 2010 SEM-2
MAB101 STATISTICAL DATA ANALYSIS 1
Experiments, observational studies, sampling, and polls; data and variables; framework for describing and manipulating probability; independence; Binomial and Normal distributions; population parameters and sample statistics; concepts of estimation and inference; standard error; confidence intervals for means and proportions; tests of hypotheses on means and proportions (one sample and two independent samples); inference using tables of counts; modelling relationships using regression analysis; model diagnosis; use of statistical software.

Antirequisites: BSB123, EFB101, MAB141, MAN101

Assumed knowledge: Grade of at least Sound Achievement in Senior Mathematics B (or equivalent) or MAB105 is assumed knowledge. Credit points: 12

Contact hours: 4 per week

Campus: Gardens Point

Teaching period: 2010 SUM-2, 2010 SEM-1 and 2010 SEM-2

MAB105 PREPARATORY MATHEMATICS
This unit is a substitute for Senior Mathematics B for those students who need the equivalent background for the successful study of units which assume it. It includes: basic number facts, natural numbers, integers, rational numbers, real numbers and their operations; basic algebra; functions and equations, graphs, linear functions, equations and applications; systems of linear equations; quadratic, exponential, logarithmic and trigonometric functions, properties and applications; introduction to calculus; rates of change, derivatives, rules of differentiation, second derivatives, maxima and minima and applications; integration and applications. This unit is incompatible with an exit assessment of High Achievement or better in Senior Mathematics B.

Assumed knowledge: Year 10 Level 6 Mathematics is assumed knowledge

Credit points: 12

Contact hours: 4 per week

Campus: Gardens Point

Teaching period: 2010 SEM-1 and 2010 SEM-2

MAB121 CALCULUS AND DIFFERENTIAL EQUATIONS
This unit extends the areas of function and calculus introduced in MAB120 by introducing series representations for functions and more advanced methods of differentiation and integration for functions of one variable. A strong connection to real world problems is made by introducing the use of differential equations in modelling, and exploring appropriate methods of solution. Practical calculations of volumes and surface areas of solids of revolution extend your interpretations of the definite integral. Taylor and Fourier series are introduced as a means of approximating functions by sums of polynomials and periodic functions. Some more advanced methods for indefinite integrals, such as partial fraction decomposition, are also introduced.

Assumed knowledge: Grade of at least Sound Achievement in Senior Mathematics C (or equivalent) or MAB125 or MAB180 or MAB120 is assumed knowledge

Equivalents: MAB111, MAB126

Credit points: 12

Contact hours: 4 per week

Campus: Gardens Point

Teaching period: 2010 SEM-1, 2010 SEM-2 and 2010 SUM

MAB122 ALGEBRA AND ANALYTIC GEOMETRY
This unit extends your knowledge in the areas of functions, calculus, matrices and vectors introduced in MAB120 by introducing functions of more than one variable, partial derivatives and multiple integrals, vector valued functions, and matrix methods for the solution of large systems of linear equations.

Equivalents: MAB112, MAB127, MAB132

Credit points: 12

Contact hours: 4 per week

Campus: Gardens Point

Teaching period: 2010 SEM-1, 2010 SEM-2 and 2010 SUM

MAB220 COMPUTATIONAL MATHEMATICS 1
This unit includes: sources of error; computer arithmetic; solution of nonlinear equations in one variable; solution of systems of linear equations; interpolation; finite differences; numerical differentiation and integration; solution of first order linear differential equations; MATLAB programming. Students without an exit level of Sound Achievement in four semesters of Senior Mathematics C need to be concurrently enrolled in MAB100 if not completed earlier.

Assumed knowledge: Grade of at least Sound Achievement in Senior Mathematics B (or equivalent) or MAB105 and corequisite MAB120 or MAB125 or MAB100 or MAB180 if you don’t have Senior Mathematics C is assumed knowledge

Credit points: 12

Contact hours: 4 per week

Campus: Gardens Point

Teaching period: 2010 SEM-1 and 2010 SEM-2
MAB311 ADVANCED CALCULUS
This unit includes the following: polar coordinates; parametric equations; conic sections; quadric surfaces; vector-valued functions; Fourier series; functions of several variables; graphs; partial derivatives; total derivatives; extrema; Lagrange multipliers; Taylor series for multivariable functions; double and triple integrals; Green's theorems; line and surface integrals; divergence theorem; Stoke's theorem; applications.
Prerequisites: (MAB111 or MAB121) and (MAB112 or MAB122) Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2010 SEM-1

MGB223 ENTREPRENEURSHIP AND INNOVATION
This unit introduces students to the nature and characteristics of entrepreneurship and innovation and explores the inter-relationship between the two within contemporary economies from managerial perspective. Learning will be directed towards developing the theoretical and applied knowledge, skills, and attitudes that will support and enhance innovation and enterprise creation activity, through the development of a business plan. The unit is designed for those individuals interested in creating a new venture or working in industries as employees of venture owners or those that serve this sector. Students will have opportunity to build a comprehensive plan of their business concept.
Prerequisites: BSB115 or CTB115 Equivalents: CTB223 Credit points: 12 Contact hours: 3 per week Campus: Gardens Point and Caboolture Teaching period: 2010 SEM-1 and 2010 SEM-2

MGB225 INTERCULTURAL COMMUNICATION AND NEGOTIATION SKILLS
The course develops students' abilities to identify and resolve problems in cross-cultural communication or negotiation situations where cultural differences have created misunderstandings or undesirable or unexpected outcomes. It first explores the concept of 'national culture' by considering the work of major theorists of cultural value dimensions - from Hall to Schwartz. Students are encouraged to analyse communication/negotiation process issues in terms of these value dimensions and to practise managing the process of communication/negotiation to improve their outcomes.
Prerequisites: BSB115, CTB115, BSB119 or BSB124 Antirequisites: MGB312 Equivalents: IBB205 Credit points: 12 Contact hours: 3 Campus: Gardens Point Teaching period: 2010 SEM-1 and 2010 SEM-2

MGB324 MANAGING BUSINESS GROWTH
This unit is designed to provide skills in the analysis, solutions and implementation of the general management issues that SME owners have to manage in their growing operations. The unit brings together the different functional aspects of managing an established SME and how they are best managed from the owner's (general manager's) point of view. It also provides opportunity to bring students into contact with real world SME owners and their venture management issues.
Prerequisites: MGB223 Equivalents: MGB218 Credit points: 12 Contact hours: 3 Teaching period: 2010 SEM-1

PCB593 DIGITAL IMAGE PROCESSING
This unit provides students with a basic understanding of the computer techniques used in image processing and reconstruction. Specific areas of study include the following: the structure of a digital image; image display techniques; grey scale palettes and look-up tables; Fourier transform theory; convolution theory; image processing hardware; image processing techniques, eg analysis, enhancement and restoration; spatial filtering; Fourier space filtering; methods of image reconstruction; 3D volume and surface rendering; applications of image processing in medicine, astronomy and remote sensing, etc.
Prerequisites: PCB375-2 or PCB496 or PQB250 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2010 SEM-1

PQB250 MECHANICS AND ELECTROMAGNETISM
The experimental means by which we have arrived at our modern understanding of the universe is central to the scientific philosophy. Students of physics and physics related areas need to possess skills in quantitative handling, processing, communication and evaluation of data. Higher level studies in specialised areas of Physics require a familiarity with a range of fundamental topics in Physics and an ability to apply critical thinking and advanced mathematical techniques to the analysis and solution of Physical problems. This first-level unit lays the foundation for these higher level studies by introducing the fundamental topic areas of mechanics and electromagnetism.
Assumed knowledge: Senior Maths B is assumed knowledge. Credit points: 12 Contact hours: 4.5 hours per week Campus: Gardens Point Teaching period: 2010 SEM-2

PQB251 WAVES AND OPTICS
Wave phenomena are used to describe and explain many of the physical processes in the universe. Sound and light are the most commonly experienced of these and have far-reaching human applications, including their use as experimental tools for science. The study of wave phenomena has led to the development of quantum mechanics, a cornerstone of modern scientific thought. This first-level unit lays the foundation for discussion of wave phenomena in higher level studies, but will also be relevant to those not considering progressing to a Physics major but wishing to understand more of the Physical world in which
we live. Assumed knowledge: Senior Maths B is assumed knowledge. Credit points: 12 Contact hours: 4.5 hours per week Campus: Gardens Point Teaching period: 2010 SEM-2

PQB350 THERMODYNAMICS OF SOLIDS AND GASES
This unit provides students with an overview of the basic thermodynamic principles that describe how heat and other forms of energy are transported through matter in its solid and gaseous states. Through integrated lecture and practical classes, it provides students with a foundation for more advanced studies later in areas such as condensed matter physics and quantum mechanics. The three areas of study in this unit; thermodynamics, solid state physics and statistical physics; are essential core topics if students are considering postgraduate study in the physical sciences or professional employment as a physicist. Prerequisites: PQB250 or PCB250, and MAB111 Corequisites: MBA311 Assumed knowledge: Students should enrol in MBA311 in the same semester if not already completed Equivalents: PCB562 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2010 SEM-1

PQB360 GLOBAL ENERGY BALANCE AND CLIMATE CHANGE
Modern societies are becoming increasingly aware of potential environmental problems associated with conventional energy production technologies. Application of alternative technologies is therefore increasing, with ambitious targets and plans to support research and development for reducing energy related environmental consequences. This unit is designed to offer science and engineering students an opportunity to gain awareness about the expanding field of alternative energy technologies and to understand relationships between use of energy and its impact on local and global environment. Prerequisites: MBA111 or MBA131 Equivalents: PCB563 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2010 SEM-1

PQB450 ENERGY, FIELDS AND RADIATION
The common theme of the topics covered in this unit is fields, the energy contained in these fields and the transfer of this energy. This theme is addressed in the specific topics of classical mechanics, electromagnetism and radiation physics. The classical mechanics and electromagnetism components build on material presented in introductory units and apply this to complex real world problems. The unit is designed to prepare students for more advanced studies in these areas but the unit will also provide a useful background for students undertaking a comajor in Physics or preparing for a career in secondary education. Prerequisites: PQB250 or PCB250, and MBA311 Equivalents: PCB362 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2010 SEM-2

PQB451 ELECTRONICS AND INSTRUMENTATION
Instrumentation plays an increasingly important role in the life of a scientist. This unit is designed to give the student a working knowledge in instrumentation and the principles of circuit theory and electronics that underlie instrumentation. It is offered at this stage of the program since it relies on work developed in the earlier advanced-level units and provides a basis for experimental work in later units. Prerequisites: PQB250 or PCB250 Antirequisites: PCB361, PCB460 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2010 SEM-2

PQB460 ASTROPHYSICS 1
This second level unit is one of the key units in the astrophysics co-major and introduces students to most of the main aspects of astrophysics. This unit is essential as it defines the connections between the supporting units of the co-major. Students are required to use the knowledge and skills developed in first level physics, maths and natural resource units. Prerequisites: PCB136 or PQB250 or SCB123 Equivalents: PCB469 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2010 SEM-2

PQB550 QUANTUM AND CONDENSED MATTER PHYSICS
TBA Prerequisites: PQB350 and (MAB135 or MBA311) Equivalents: PCB561 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2010 SEM-1

PQB551 PHYSICAL ANALYTICAL TECHNIQUES
Modern methods of physical analysis are an important tool for the physical scientist. This unit provides an introduction to the physical principles and applications in three fields of analysis: X-ray diffraction, analytical electron microscopy and physical spectroscopy. Each of these topics encompasses a variety of measurement techniques. The methodologies presented have wide application in a number of areas of science and technology including nanotechnology and materials research and development. Lectures are supplemented by laboratory practicals to enable students to gain familiarity and experience with the instrumentation. Prerequisites: (PQB350 or PCB462) and (MAB112 or MBA122) Equivalents: PCB562 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2010 SEM-1
PQB650 ADVANCED THEORETICAL PHYSICS
This unit consists of three parts. Part A extends the content of previous units in electromagnetism and the application of Maxwell's equations, electromagnetic waves, polarisation, dielectric permittivity, transmission line theory, waveguides, optic fibre theory, antennae. Part B includes a detailed study of magnetic resonance and its applications. Part C presents the extension of studies in statistical mechanics, including microscopic approach to entropy, partition function, paramagnetism, perfect and real classical and quantum gases, phase equilibria, Bose-Einstein condensate, Brownian motion.
Prerequisites: (PQB350 or PCB462) and (PQB550 or PCB561) Equivalents: PCB665 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2010 SEM-1 and 2010 SEM-2

PQB651 EXPERIMENTAL PHYSICS
This unit represents the culmination of the students experiences in undergraduate experimental work. The unit is offered in the final year of study to take advantage of and integrate the skills acquired in previous units. The student is given the opportunity to select three experiments to be undertaken from a series of extended experiments in the areas of physics research undertaken at QUT.
Prerequisites: PQB451 or PCB460 Equivalents: PCB661 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2010 SEM-1 and 2010 SEM-2

SCB110 SCIENCE CONCEPTS AND GLOBAL SYSTEMS
You will undertake interdisciplinary study of the physical, geological and biological concepts relating to the origins of life; from the creation of matter and planets, to the emergence of life in all its complexity, culminating in evolution of earth ecosystems. Human influences, overlaid upon earth’s complex systems, will be examined as to their type, extent, and impact. In counterpoint, you will explore the breadth of philosophical developments underlying our search for knowledge; fundamental thoughts and ideas that span the last 2,500 years of human history. Ultimately, these concepts evolved through the development of a scientific method and we explore its workings in relation to the ongoing enterprise of human understanding.
Credit points: 12 Contact hours: 4.5 per week Campus: Gardens Point Teaching period: 2010 SEM-1

SCB111 CHEMISTRY 1
This unit covers the fundamentals of general and physical chemistry. Topics include atomic and molecular structure, introduction to chemical bonding, reaction stoichiometry, thermochemistry, gas phase chemistry, reaction kinetics, equilibrium, acids, bases, buffers, oxidation, reduction and electrochemistry. The practical program involves experiments illustrating a range of chemical reaction types including precipitation reactions, acid-base chemistry and redox chemistry using analytical experimental methods. A comprehensive tutorial program (CHELP) complements the lectures and is designed to assist students to develop the problem solving skills required for further study in chemistry and related sciences.
Antirequisites: SCB113 Credit points: 12 Contact hours: 4.5 per week Campus: Gardens Point Teaching period: 2010 SEM-1 and 2010 SEM-2

SCB112 CELLULAR BASIS OF LIFE
A study of life processes in all five groups of living organisms (bacteria, protists, fungi, plants and animals). Traditional topics in biology are integrated with recent research advances in molecular and cellular biology to provide a comprehensive foundation for later units in the medical, biotechnological and ecological sciences. The unit begins by constructing cells from the four quantitatively important groups of biological molecules (proteins, lipids, carbohydrates and nucleic acids). Molecular and evolutionary aspects of genetics are then introduced, with the great diversity of reproductive strategies found among organisms being emphasised. Finally, bioenergetics (photosynthesis and respiration) and its relevance to environmental issues is outlined.
Antirequisites: LSB118 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2010 SEM-1 and 2010 SEM-2