Bachelor of Technology Innovation (Biochemistry) (ST50)

Year offered: 2010
Admissions: Yes
CRICOS code: 070694G
Course duration (full-time): 4 years
Domestic fees (indicative): 2010: CSP $2,125 (indicative) per semester
International Fees (indicative): 2010: $11,750 (indicative) per semester
Domestic Entry: February
International Entry: February and July
Past rank cut-off: 77
Past OP cut-off: 12
Assumed knowledge: English (4, SA) and Maths B (4, SA)
Preparatory studies: For information on acquiring assumed knowledge visit http://www.studentservices.qut.edu.au/apply/ug/info/knowledge.jsp
Total credit points: 384
Standard credit points per full-time semester: 96
Course coordinator: Associate Professor Chris Collet
Campus: Gardens Point

Overview
Biochemistry is the study of the chemical processes that occur in living organisms including the chemical structure, function and properties and energy flows. Biochemistry underpins much of the life sciences industry.

Career Outcomes
Graduates can build careers in the world of commercialisation and technology transfer of research innovation and complex emerging technologies pertaining to their specific discipline and beyond. Graduates could pursue careers in all aspects of the new product development continuum including business development officers, venture capital associates, investment analysts, commercialisation managers, technology transfer officers, intellectual property analysts, policy development officers and, of course, research scientists.

Professional Recognition
Graduates are eligible for membership of the Australian Society for Biochemistry and Molecular Biology (ASBMB), and in some cases the Australasian Association of Clinical Biochemists (AABC).

Biochemistry Major Course Structure

<table>
<thead>
<tr>
<th>Year 1, Semester 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SCB110 Science Concepts and Global Systems</td>
<td></td>
</tr>
<tr>
<td>SCB111 Chemistry 1</td>
<td></td>
</tr>
<tr>
<td>SCB112 Cellular Basis of Life</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 2, Semester 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LQB381 Biochemistry: Structure and Function</td>
<td></td>
</tr>
<tr>
<td>LQB383 Molecular and Cellular Regulation</td>
<td></td>
</tr>
<tr>
<td>Plus TWO unit from the relevant options List which may include one unit from outside of the Faculty *</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 2, Semester 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LQB481 Biochemical Pathways and Metabolism</td>
<td></td>
</tr>
<tr>
<td>LQB483 Molecular Biology Techniques</td>
<td></td>
</tr>
<tr>
<td>Plus TWO units from the relevant options List which may include one unit from outside of the Faculty#</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 3, Semester 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BSB115 Management</td>
<td></td>
</tr>
<tr>
<td>LQB581 Functional Biochemistry</td>
<td></td>
</tr>
<tr>
<td>LQB582 Biomedical Research Technologies</td>
<td></td>
</tr>
<tr>
<td>STB551 Engaging with the Innovation Industry</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 3, Semester 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BSB126 Marketing</td>
<td></td>
</tr>
</tbody>
</table>

NOTE:
1. Students without a Sound Achievement (4 semesters) in Maths B should enrol in MAB105.
2. Students with a Sound Achievement in Maths B and NOT wishing to major in Mathematics or Physics should enrol in MAB101.
3. Students with a Sound Achievement in Maths C and wishing to major in Mathematics or Physics should enrol in MAB121.
4. Students without a Sound Achievement in Maths C and wishing to major in Mathematics or Physics should enrol in MAB120.
UNIT SYNOPTES

AMB240 MARKETING PLANNING AND MANAGEMENT
This unit extends the student’s knowledge of the fundamental marketing concepts and theories introduced in the Faculty Core unit in Marketing, by adding further breadth and depth of knowledge of marketing and developing skills in the application of this knowledge to marketing planning and management within the business environment. Emphasis is on the role of the marketing manager at the product management level in undertaking analysis, planning, implementation and control of marketing activities.

Prerequisites: BSB126 or CTB126
Equivalents: CTB240
Credit points: 12
Campus: Gardens Point and Caboolture
Teaching period: 2010 SEM-1 and 2010 SEM-2

BSB115 MANAGEMENT
The unit provides an introduction to the theories and practice of management and organisations. Emphasis is on the conceptual and people skills that are needed in all areas of management and in all areas of organisational life. The unit acknowledges that organisations exist in an increasingly international environment where the emphasis will be on knowledge, the ability to learn, to change and to innovate. Organisations are viewed from individual, group, corporate and external environmental perspectives.

Prerequisites: BSB115
Equivalents: CTB115
Credit points: 12
Campus: Gardens Point and Caboolture
Teaching period: 2010 SEM-1 and 2010 SEM-2

BSB126 MARKETING
This introductory subject examines the role and importance of marketing to the contemporary organisation. Emphasis is placed on understanding the basic principles and practices of marketing such as the marketing concept, market segmentation, management information systems and consumer behaviour. The unit explores the various elements of the marketing mix, with special reference to product, price, distribution, and promotion, including advertising and public relations. By way of introduction only, key issues relating to services marketing, e-marketing and strategic marketing are also canvassed.

Prerequisites: BSB116
Equivalents: CTB126
Credit points: 12
Campus: Gardens Point and Caboolture
Teaching period: 2010 SEM-1 and 2010 SUM

BSB311 INNOVATION COMMERCIALISATION STRATEGIES
Students study strategies and approaches used in industry and government organisations for the research, development and commercialisation of biotechnology innovations. The unit offers the opportunity to read widely as well as in depth about the commercialisation of molecular biology and biotechnology research. Theoretical concepts are integrated with prepared case studies prior to guest speaker seminars.

Prerequisites: BSB310 or MGB223
Credit points: 12
Campus: Gardens Point and Caboolture
Teaching period: 2010 SEM-1, 2010 SEM-2 and 2010 SUM

LQB381 BIOCHEMISTRY: STRUCTURE AND FUNCTION
This unit extends basic organic chemistry theory to the level of the biological macromolecules. A clear understanding of the structure and function of these molecules is essential to a student’s understanding of the metabolism of living cells. Hence this biomolecular unit is a fundamental prerequisite for all advanced units in the various disciplines in the field of life sciences.
LQB383 MOLECULAR AND CELLULAR REGULATION
Molecular and Cellular Regulation is a second year unit and is a continuation and expansion of topics introduced in SCB112 Cellular Basis of Life and SCB122 Cell & Molecular Biology. Molecular and Cellular Regulation strengthens the focus on the molecular and genetic aspects of cellular processes and the consequences to the organism of failure of these basic processes. Topics taught relate to gene structure and regulation in prokaryotes and eukaryotes and the role of gene expression in the development of complex organisms. Related concepts such as cell signalling, communication, proliferation and survival are further developed in this unit.

Prerequisites: SCB122 or LSB328
Antirequisites: LSB468 and LSB338
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2010 SEM-1

LQB386 MICROBIAL STRUCTURE AND FUNCTION
Aspects of microbiology impinge upon many facets of daily life, for example, human health, genetic engineering, the food industry and the built and natural environment. The unit introduces you to and provides you with a solid foundation in the basic microbiology required for progression to advanced studies in Microbiology. This unit provides knowledge about safe handling and study of micro-organisms that is also very important in many other disciplines, because micro-organisms are used as models and tools in a wide range of study areas.

Prerequisites: SCB112 and (SCB121 or SCB113)
Antirequisites: LSB328
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2010 SEM-1

LQB388 MEDICAL PHYSIOLOGY 1
This unit deals specifically with the physiological systems that are responsible for the maintenance of health in humans. In the course of the semester students will investigate half the systems that constitute the human body (with the remainder dealt with in the second semester unit Physiology 2 [LQB488]). The unit offers a useful frame of reference for students enrolled in courses such as animal biology, biochemistry, microbiology, molecular biology, nutrition and human movements. Together with Physiology 2 [LQB488] this unit is a prerequisite to the third level unit, Applied Physiology [LQB588] and will be of particular interest to students considering medicine as a postgraduate career option.

Prerequisites: SCB120, LSB131, LSB142, LSB255, LSB258 or NRB270
Antirequisites: LSB358
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2010 SEM-1

LQB481 BIOCHEMICAL PATHWAYS AND METABOLISM
The study of biochemistry and cell biology, along with molecular biology, provides students with the knowledge required for the proper understanding of the structure and function of living organisms at the molecular level. As such, this unit extends the studies begun in the unit LQB381 Biochemistry into the metabolic processes occurring in living cells, and provides students with a basis for further studies in biochemistry as well as support for other units in the third year of the course.

Prerequisites: LQB381 or LSB308
Antirequisites: LSB275, LSB325, LSB408
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2010 SEM-2

LQB483 MOLECULAR BIOLOGY TECHNIQUES
Molecular biology and recombinant DNA technologies have important roles in many areas within the life sciences, including medicine, agriculture, cell biology, environmental science and forensics. Through close alignment of theoretical concepts and practical skills, this lab-based unit expands on molecular themes introduced in earlier cell and molecular biology units to develop expertise in modern recombinant DNA techniques and an understanding of strategies used to identify and manipulate genes. The close relationship between theory and practice in this unit is designed to develop competence, independence and critical thinking that will provide students with a solid foundation for advanced molecular biology studies presented in several third level units.

Prerequisites: LSB238 or SCB122
Antirequisites: LSB468, LSN468, LSN483
Assumed knowledge: LQB383 is recommended prior study
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2010 SEM-2

LQB484 INTRODUCTION TO GENOMICS AND BIOINFORMATICS
The completion of the Human Genome project, along with similar projects on other organisms of a prokaryote and eukaryote nature, marked the beginning of a major revolution in fundamental biology that changed our understanding of the natural world. To understand how information on genome structure-function relationships (i.e. bioinformatics) is being used in areas such as gene discovery, disease diagnosis and drug development, students need to understand how the information content of DNA and proteins is extracted and analysed. This unit introduces students to the approaches to database mining and genome exploration.

Prerequisites: LQB383 or LSB338 or LSN101 and LSN102
Antirequisites: LSB537, LSB619, LSB469
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2010 SEM-2

LQB486 CLINICAL MICROBIOLOGY I

Micro-organisms are very important as pathogens of humans and animals, and their accurate clinical diagnosis is essential for appropriate treatment and management of infections. This unit builds upon the foundational topics in microbiology that you learned in LQB386 (Microbial Structure and Function) and starts preparing you for a career in a microbiology laboratory in clinical practice, industry or research. The unit will advance your knowledge and skills in classical methods of isolation and identification of bacteria in clinical specimens and introduce aspects of microbial pathogenesis and antibiotic sensitivity. The unit will provide you with an understanding of clinically important viruses, and will commence your training in diagnostic parasitology.

Prerequisites: LQB386 or LSB328
Antirequisites: LSB435, LSB547
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2010 SEM-2

LQB488 MEDICAL PHYSIOLOGY 2

This unit deals specifically with the physiological systems that are responsible for the maintenance of health in humans. In the course of the semester students will investigate half the systems that constitute the human body (with the remainder having been dealt with in the first semester unit Physiology 1 [LQB388]). The unit offers a useful frame of reference for students enrolled in courses such as animal biology, biochemistry, microbiology, molecular biology, nutrition and human movements. Together with Physiology 1 [LQB388] this unit is a prerequisite to the third level units, Applied Physiology [LQB588] and will be of particular interest to students considering medicine as a postgraduate career option.

Prerequisites: LSB131, LSB142, LSB255, LSB258, NRB270, or SCB120
Corequisites: LSB658
Antirequisites: LSB458
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2010 SEM-2

LQB489 PLANT PHYSIOLOGY AND CELL BIOLOGY

Plants are a vital resource providing food, medicines, fibre and fuel. The utilisation and manipulation of plants requires an understanding of growth and development on a molecular, cellular and whole plant basis. This is an intermediate-level unit covering the principles of plant cell biology and physiology to provide a platform for more advanced studies in plant biology and biotechnology. It integrates the fundamentals of plant physiology, biochemistry and molecular biology in such a way to enable students to understand how plants grow, develop and interact with their environment, and will also be valuable for lifelong appreciation of the potential of agriculture and its contribution to humanity. The aim of this unit is to provide you with an understanding of plant function from the cell to the whole plant, skills in measuring and monitoring these processes and an appreciation of how they are influenced by the environment.

Prerequisites: SCB120 or SCB122 or NRB270 or LSB238
Antirequisites: LSB397, LSB497
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2010 SEM-2

LQB581 FUNCTIONAL BIOCHEMISTRY

This unit will study advanced biochemical concepts with a focus on metabolism, signalling pathways, systems and networks that coordinate and regulate the functional behaviour of cells and tissues.

Credit points: 12
Contact hours: 5 per week
Campus: Gardens Point
Teaching period: 2010 SEM-1

LQB582 BIOMEDICAL RESEARCH TECHNOLOGIES

This unit will study the technical principles and practical techniques that are essential for advancing research and development in biochemistry and biotechnology.

Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2010 SEM-1

LQB681 BIOCHEMICAL RESEARCH SKILLS

In the real world, the design and completion of successful research and/or business projects demand that individuals gather information, solve problems, work effectively as a part of a team and analyse and communicate results in a critical manner. This unit offers opportunities for you to develop these skills that are valued highly by potential employers and research project leaders. This unit is a capstone biochemistry unit designed to prepare you as a prospective graduate for independent and group research.

Prerequisites: LQB381 or LSB308. Students with equivalent study can apply for a requisite waiver
Equivalent: LSB607
Credit points: 12
Contact hours: 5 per week
Campus: Gardens Point
Teaching period: 2010 SEM-2

LQB682 PROTEIN BIOCHEMISTRY AND BIOENGINEERING

This unit is designed to give you the essential concepts and techniques driving research and industrial biotechnology so that you will be equipped for multiple careers in the biological sciences. The skills you develop will allow you to enter a practical laboratory environment or to apply your knowledge in related areas of evaluations of technologies and intellectual property.

Prerequisites: LQB381 or LSB308 or LSN101 and LSN102
Antirequisites: LSB605, LSB608
Credit points: 12
Contact hours: 5 per week
Campus: Gardens Point
LWS007 INTRODUCTION TO INTELLECTUAL PROPERTY LAW

Intellectual property protection is undoubtedly of paramount importance in the research, development and commercialisation of emerging technologies. Managers and researchers need to be aware of the different types of property that can be protected and how the property needs to be protected. There have also been significant developments in the field of intellectual property law in recent years. The concepts taught in Introduction to Intellectual Property Law are of significant relevance to persons intending to practice in the emerging fields of science.

Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2010 SEM-1

MAB105 PREPARATORY MATHEMATICS

This unit is a substitute for Senior Mathematics B for those students who need the equivalent background for the successful study of units which assume it. It includes: basic number facts, natural numbers, integers, rational numbers, real numbers and their operations; basic algebra; functions and equations, graphs, linear functions, equations and applications; systems of linear equations; quadratic, exponential, logarithmic and trigonometric functions, properties and applications; introduction to calculus; rates of change, derivatives, rules of differentiation, second derivatives, maxima and minima and applications; integration and applications. This unit is incompatible with an exit assessment of High Achievement or better in Senior Mathematics B.

Assumed knowledge: Year 10 Level 6 Mathematics is assumed knowledge Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2010 SEM-1 and 2010 SEM-2

MAB120 ALGEBRA AND CALCULUS

This unit introduces and reviews the elementary concepts of function, calculus, matrices and vectors with special reference to applications in science, technology and business where appropriate. Topics covered include the algebra of complex numbers, elementary functions (polynomial, trigonometric, exponential and logarithmic) and their properties, differentiation and integration methods and principles, geometric and algebraic applications of vectors and the solution of linear systems using matrices.

Assumed knowledge: Grade of at least Sound Achievement in Senior Mathematics B (or equivalent) or MAB105 is assumed knowledge Equivalents: MAB100, MAB125, MAB180 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2010 SEM-1, 2010 SEM-2 and 2010 SUM

MAB121 CALCULUS AND DIFFERENTIAL EQUATIONS

This unit extends the areas of function and calculus introduced in MAB120 by introducing series representations for functions and more advanced methods of differentiation and integration for functions of one variable. A strong connection to real world problems is made by introducing the use of differential equations in modelling, and exploring appropriate methods of solution. Practical calculations of volumes and surface areas of solids of revolution extend your interpretations of the definite integral. Taylor and Fourier series are introduced as a means of approximating functions by sums of polynomials and periodic functions. Some more advanced methods for indefinite integrals, such as partial fraction decomposition, are also introduced.

Assumed knowledge: Grade of at least Sound Achievement in Senior Mathematics C (or equivalent) or MAB125 or MAB180 or MAB120 is assumed knowledge Equivalents: MAB111, MAB126 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2010 SEM-1, 2010 SEM-2 and 2010 SUM

MGB223 ENTREPRENEURSHIP AND INNOVATION

This unit introduces students to the nature and characteristics of entrepreneurship and innovation and explores the inter-relationship between the two within contemporary economies from managerial perspective. Learning will be directed towards developing the theoretical and applied knowledge, skills, and attitudes that will support and enhance innovation and enterprise creation activity, through the development of a business plan. The unit is designed for those individuals interested in creating a new venture or working in industries as employees of venture owners or those that serve this sector. Students will have opportunity to build a comprehensive plan of their business concept.
SCB111 CHEMISTRY 1
This unit covers the fundamentals of general and physical chemistry. Topics include atomic and molecular structure, introduction to chemical bonding, reaction stoichiometry, thermochemistry, gas phase chemistry, reaction kinetics, equilibrium, acids, bases, buffers, oxidation, reduction and electrochemistry. The practical program involves experiments illustrating a range of chemical reaction types including precipitation reactions, acid-base chemistry and redox chemistry using analytical experimental methods. A comprehensive tutorial program (CHELP) complements the lectures and is designed to assist students to develop the problem solving skills required for further study in chemistry and related sciences.

Antirequisites: SCB113 **Credit points:** 12 **Contact hours:** 4.5 per week **Campus:** Gardens Point **Teaching period:** 2010 SEM-1 and 2010 SEM-2

SCB112 CELLULAR BASIS OF LIFE
A study of life processes in all five groups of living organisms (bacteria, protists, fungi, plants and animals). Traditional topics in biology are integrated with recent research advances in molecular and cellular biology to provide a comprehensive foundation for later units in the medical, biotechnological and ecological sciences. The unit begins by constructing cells from the four quantitatively important groups of biological molecules (proteins, lipids, carbohydrates and nucleic acids). Molecular and evolutionary aspects of genetics are then introduced, with the great diversity of reproductive strategies found among organisms being emphasised. Finally, bioenergetics (photosynthesis and respiration) and its relevance to environmental issues is outlined.

Antirequisites: LSB118 **Credit points:** 12 **Contact hours:** 4 per week **Campus:** Gardens Point **Teaching period:** 2010 SEM-1 and 2010 SEM-2

SCB110 SCIENCE CONCEPTS AND GLOBAL SYSTEMS
You will undertake interdisciplinary study of the physical, geological and biological concepts relating to the origins of life; from the creation of matter and planets, to the emergence of life in all its complexity, culminating in evolution of earth ecosystems. Human influences, overlaid upon earth’s complex systems, will be examined as to their type, extent, and impact. In counterpoint, you will explore the breadth of philosophical developments underlying our search for knowledge; fundamental thoughts and ideas that span the last 2,500 years of human history. Ultimately, these concepts evolved through the development of a scientific method and we explore its workings in relation to the ongoing enterprise of human understanding.

Credit points: 12 **Contact hours:** 4.5 per week **Campus:** Gardens Point **Teaching period:** 2010 SEM-1

MGB225 INTERCULTURAL COMMUNICATION AND NEGOTIATION SKILLS
The course develops students’ abilities to identify and resolve problems in cross-cultural communication or negotiation processes in situations where cultural differences have created misunderstandings or undesirable or unexpected outcomes. It first explores the concept of 'national culture' by considering the work of major theorists of cultural value dimensions - from Hall to Schwartz. Students are encouraged to apply communication/negotiation process issues in terms of these value dimensions and to practise managing the process of communication/negotiation to improve their outcomes.

Prerequisites: BSB115, CTB115, BSB119 or BSB124 **Antirequisites:** MGB312 **Credit points:** 12 **Contact hours:** 3 **Campus:** Gardens Point **Teaching period:** 2010 SEM-1 and 2010 SEM-2

MGB324 MANAGING BUSINESS GROWTH
This unit is designed to provide skills in the analysis, solutions and implementation of the general management issues that SME owners have to manage in their growing operations. The unit brings together the different functional aspects of managing an established SME and how they are best managed from the owner’s (general manager’s) point of view. It also provides opportunities to bring students into contact with real world SME owners and their venture management issues.

Prerequisites: MGB223 **Equivalents:** MGB218 **Credit points:** 12 **Contact hours:** 3 **Teaching period:** 2010 SEM-1

SCB120 PLANT AND ANIMAL PHYSIOLOGY
Regardless of which area of biology you decide to specialise in, you will need to understand the complex interactions between cells, tissues, organs and organ systems that comprise multi-cellular organisms. Although many living processes can be explained at the levels of biochemistry, biophysics and cell biology, a true understanding of complex, multicellular organisms requires integration of knowledge drawn from all of these areas, combined with the more complex physiological and structural levels you will learn about in this unit. The knowledge gained in this and other first level units provides you with the conceptual framework necessary to understand processes occurring from the cellular to the whole organism level and to higher levels of organisation.

Prerequisites: SCB112 **Equivalents:** NRB270 **Credit points:** 12 **Contact hours:** 4.5 per week **Campus:** Gardens Point **Teaching period:** 2010 SEM-1 and 2010 SEM-2

SCB111 CHEMISTRY 1
This unit covers the fundamentals of general and physical chemistry. Topics include atomic and molecular structure, introduction to chemical bonding, reaction stoichiometry, thermochemistry, gas phase chemistry, reaction kinetics, equilibrium, acids, bases, buffers, oxidation, reduction and electrochemistry. The practical program involves experiments illustrating a range of chemical reaction types including precipitation reactions, acid-base chemistry and redox chemistry using analytical experimental methods. A comprehensive tutorial program (CHELP) complements the lectures and is designed to assist students to develop the problem solving skills required for further study in chemistry and related sciences.

Antirequisites: SCB113 **Credit points:** 12 **Contact hours:** 4.5 per week **Campus:** Gardens Point **Teaching period:** 2010 SEM-1 and 2010 SEM-2

SCB112 CELLULAR BASIS OF LIFE
A study of life processes in all five groups of living organisms (bacteria, protists, fungi, plants and animals). Traditional topics in biology are integrated with recent research advances in molecular and cellular biology to provide a comprehensive foundation for later units in the medical, biotechnological and ecological sciences. The unit begins by constructing cells from the four quantitatively important groups of biological molecules (proteins, lipids, carbohydrates and nucleic acids). Molecular and evolutionary aspects of genetics are then introduced, with the great diversity of reproductive strategies found among organisms being emphasised. Finally, bioenergetics (photosynthesis and respiration) and its relevance to environmental issues is outlined.

Antirequisites: LSB118 **Credit points:** 12 **Contact hours:** 4 per week **Campus:** Gardens Point **Teaching period:** 2010 SEM-1 and 2010 SEM-2

SCB110 SCIENCE CONCEPTS AND GLOBAL SYSTEMS
You will undertake interdisciplinary study of the physical, geological and biological concepts relating to the origins of life; from the creation of matter and planets, to the emergence of life in all its complexity, culminating in evolution of earth ecosystems. Human influences, overlaid upon earth’s complex systems, will be examined as to their type, extent, and impact. In counterpoint, you will explore the breadth of philosophical developments underlying our search for knowledge; fundamental thoughts and ideas that span the last 2,500 years of human history. Ultimately, these concepts evolved through the development of a scientific method and we explore its workings in relation to the ongoing enterprise of human understanding.

Credit points: 12 **Contact hours:** 4.5 per week **Campus:** Gardens Point **Teaching period:** 2010 SEM-1
Gardens Point Teaching period: 2010 SEM-2

SCB121 CHEMISTRY 2
Chemistry is the central science. This is a unit of fundamental importance as it covers the background and general principles that underpin understanding in many Science and Health related disciplines, particularly in regards to the chemistry of life. In this unit students will be introduced to fundamental aspects of chemistry including the electronic structure of atoms, chemical bonding and molecular structure. From this basis students will develop an understanding of the fundamentals of organic chemistry including chirality, functional groups and organic reactions which will lead to important bio-inorganic molecules and coordination complexes.
Prerequisites: (SCB111 or PCB142) SCB111 can be studied in the same teaching period Antirequisites: SCB113
Credit points: 12 Contact hours: 4.5 per week Campus: Gardens Point Teaching period: 2010 SEM-1 and 2010 SEM-2

SCB122 CELL AND MOLECULAR BIOLOGY
SCB122 Cell and Molecular Biology 1 equips students with a comprehensive understanding the molecular basis of the cell. This unit expands on the basic principles and concepts relating to cell structure, function, perpetuation and specialisation introduced in SCB112 and introduces students to fundamental molecular mechanisms central to the organisation of the cell. Students will be shown how macromolecular interactions are crucial to information flow and heredity. Students are taught the relationships between chromosomes, genes and cellular function and ultimately how these may determine an organism’s phenotype. This unit underpins cell biology and molecular biology units that are offered in second year Life Science units. SCB122 is also ideal for interfaculty students (eg Education, Business, Arts) who will undertake no further life science studies.
Prerequisites: SCB112 Antirequisites: LSB238
Credit points: 12 Contact hours: 4.5 per week Campus: Gardens Point Teaching period: 2010 SEM-2

SCB123 PHYSICAL SCIENCE APPLICATIONS
Physics principles underpin all of the sciences and ‘new technologies’. This unit adopts an investigative team-based approach to provide students with an appreciation of fundamental concepts in physical science, together with experience in the application of these concepts to a range of ‘real world’ problems. The unit should be taken in the first year of study as the fundamental principles introduced here will be built upon in later units in the context of each science student’s major discipline area. Employers in cutting-edge industries expect science graduates to have effective strategies for problem solving, skills for collaborative work and scientific communication and research skills. This unit aims to develop these skills by applying the fundamental concepts of physical science to problems in a team environment.
Credit points: 12 Contact hours: 4.5 per week Campus: Gardens Point Teaching period: 2010 SEM-2