Bachelor of Applied Science (Geoscience) (SC01)

Year offered: 2011
Admissions: Yes
CRICOS code: 003502J
Course duration (full-time): 3 Years
Course duration (part-time): 6 Years
Domestic Fees (indicative): 2011: CSP $2,178 per semester (indicative)
International Fees (indicative): 2011: $12,250 (indicative) per semester
Domestic Entry: February and July
International Entry: February and July* (Conditions apply for July entry)
QTAC code: 418011
Past rank cut-off: 77
Past OP cut-off: 12
OP Guarantee: Yes
Assumed knowledge: English (4, SA) and Maths B (4, SA)
Preparatory studies: For information on acquiring assumed knowledge visit http://www.qut.edu.au/assumed-knowledge
Total credit points: 288
Standard credit points per full-time semester: 48
Standard credit points per part-time semester: 24
Course coordinator: Dr Marion Bateson
Discipline coordinator: Dr Gary Huftile
Campus: Gardens Point

Career Outcomes

Employment opportunities exist within a variety of government organisations and consulting companies with work ranging from field geologists to research scientists. Exploration geologists are employed by mining and hydrocarbon exploration companies where they may be involved in underground geological mapping, evaluation of ore reserves, production control, or exploration for new mineral or oil and gas deposits. They may be based in remote settings or major cities. Graduates may work in computing, data modelling and remote sensing in any of these areas.

An honours degree has traditionally been required by many employers including the larger mining and exploration companies.

Professional Recognition

Graduates are eligible for membership of the Australasian Institute of Mining and Metallurgy (AIMM), Australian Institute of Geoscientists (AIG), and the Geological Society of Australia (GSA).

Recommended Study

At least one of the sciences.

Geoscience Full-time Course Structure: First Semester Entry

Year 1, Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCB110</td>
<td>Science Concepts and Global Systems</td>
</tr>
<tr>
<td>SCB111</td>
<td>Chemistry 1</td>
</tr>
<tr>
<td>SCB112</td>
<td>Cellular Basis of Life</td>
</tr>
</tbody>
</table>

Plus ONE of:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAB101</td>
<td>Statistical Data Analysis 1</td>
</tr>
<tr>
<td>MAB105</td>
<td>Preparatory Mathematics</td>
</tr>
<tr>
<td>MAB120</td>
<td>Algebra and Calculus</td>
</tr>
</tbody>
</table>

MAB121 Calculus and Differential Equations

NOTE:

1. Students with a Sound Achievement (4 semesters) in Maths A should enrol in MAB105
2. Students with a Sound Achievement in Maths B and NOT wishing to major in Physics should enrol in MAB101.
3. Students with a Sound Achievement in Maths C and wishing to major in Physics should enrol in MAB121.
4. Students without a Sound Achievement in Maths C and wishing to major in Physics should enrol in MAB120.
5. Students without a Sound Achievement in Maths B or Maths A should consult with the course coordinator.

Year 1, Semester 2 (Geoscience Pre-Major Strand)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NQB201</td>
<td>Planet Earth</td>
</tr>
<tr>
<td>NQB202</td>
<td>History of Life on Earth</td>
</tr>
<tr>
<td>SCB123</td>
<td>Physical Science Applications</td>
</tr>
<tr>
<td>SCB222</td>
<td>Exploration of the Universe</td>
</tr>
</tbody>
</table>

Year 2, Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NQB311</td>
<td>Mineralogy</td>
</tr>
<tr>
<td>NQB314</td>
<td>Sedimentary Geology</td>
</tr>
</tbody>
</table>

Plus TWO other units selected according to the second major requirements

Year 2, Semester 2 *

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NQB411</td>
<td>Petrology of Igneous and Metamorphic Rocks</td>
</tr>
<tr>
<td>NQB412</td>
<td>Structural Geology and Field Methods</td>
</tr>
</tbody>
</table>

Plus TWO other units selected according to the second major requirements
Year 3, Semester 1 *

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NQB502</td>
<td>Field Methods in Natural Resource Sciences</td>
</tr>
<tr>
<td>NQB513</td>
<td>Geophysics</td>
</tr>
<tr>
<td>Plus TWO other unit selected according to the second major requirements</td>
<td></td>
</tr>
</tbody>
</table>

Year 3, Semester 2 *

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NQB615</td>
<td>Geochemistry</td>
</tr>
<tr>
<td>Plus ONE of</td>
<td></td>
</tr>
<tr>
<td>NQB612</td>
<td>Basin Analysis and Petroleum Geology</td>
</tr>
<tr>
<td>NQB613</td>
<td>Plate Tectonics</td>
</tr>
<tr>
<td>NQB614</td>
<td>Groundwater Systems</td>
</tr>
<tr>
<td>Plus TWO other units selected according to the second major requirements</td>
<td></td>
</tr>
</tbody>
</table>

Recommended Second Majors:
- Applied Geology, Environmental Science, Physics

* Elective Unit for all Majors except Forensic Science:
- SCB500 Industry Project

NOTE: SCB500 Industry Project is a unit that will be offered as an elective in all majors. This unit requires 84 credit points of Level 2 and/or 3 Science units, so it may only be taken at the completion of Year 2 in Summer or during Year 3.

Geoscience Full-time Course Structure: Mid-Year Entry

<table>
<thead>
<tr>
<th>Mid-Year (July) Entry</th>
</tr>
</thead>
</table>

FOR DOMESTIC STUDENTS: Due to the careful construction of scientific knowledge demanded in the SC01 degree, mid-year entry requires some compromises. There are two ways to construct a mid-year program:

1. Take foundation units and their follow-up units together, rather than in sequence. This will be very challenging, but will allow you to start second year units at the start of the next year. Please contact the course coordinator or the discipline coordinator to devise a suitable program of study. Please note: as this option usually involves taking units from different levels concurrently, which may not timetable appropriately, in some cases it may not be possible to complete within the standard time frame.

2. Take three units per semester for the first three semesters, adding one semester to your degree completion time. This allows you to do your first year units in the correct sequence, at a slightly more leisurely pace, while still being officially a full-time student. You may enrol in a fourth unit (level 2 unit from your chosen major) provided you have the necessary pre-requisites. This is the recommended option.

FOR INTERNATIONAL STUDENTS: Mid-year entry is only available under certain circumstances. Please contact the Course Coordinator to discuss available midyear entry and advance standing options on a case by case basis.

Year 1, semester commencing July

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NQB201</td>
<td>Planet Earth</td>
</tr>
<tr>
<td>SCB111</td>
<td>Chemistry 1</td>
</tr>
<tr>
<td>SCB112</td>
<td>Cellular Basis of Life</td>
</tr>
</tbody>
</table>

Year 2, semester commencing February

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NQB311</td>
<td>Mineralogy</td>
</tr>
<tr>
<td>SCB110</td>
<td>Science Concepts and Global Systems</td>
</tr>
<tr>
<td>Plus either</td>
<td></td>
</tr>
<tr>
<td>MAB101</td>
<td>Statistical Data Analysis 1</td>
</tr>
<tr>
<td>Or</td>
<td></td>
</tr>
<tr>
<td>MAB105</td>
<td>Preparatory Mathematics</td>
</tr>
</tbody>
</table>

Year 2, semester commencing July

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NQB202</td>
<td>History of Life on Earth</td>
</tr>
<tr>
<td>SCB123</td>
<td>Physical Science Applications</td>
</tr>
<tr>
<td>SCB222</td>
<td>Exploration of the Universe</td>
</tr>
</tbody>
</table>

Geoscience Part-time Course Structure

Students interested in undertaking this major part-time should consult the discipline coordinator.

UNIT SYNOPSISES

MAB101 STATISTICAL DATA ANALYSIS 1

Experiments, observational studies, sampling, and polls; data and variables; framework for describing and manipulating probability; independence; Binomial and Normal distributions; population parameters and sample statistics; concepts of estimation and inference; standard error; confidence intervals for means and proportions; tests of hypotheses on means and proportions (one sample and two independent samples); inference using tables of counts; modelling relationships using regression analysis; model diagnosis; use of statistical software.

Antirequisites: BSB123, EFB101, MAB141, MAN101, MAB233 **Assumed knowledge:** Grade of at least Sound
Achievement in Senior Mathematics B (or equivalent) or MAB105 is assumed knowledge. **Credit points:** 12 **Contact hours:** 4 per week **Campus:** Gardens Point **Teaching period:** 2011 SUM-2, 2011 SEM-1 and 2011 SEM-2

MAB105 PREPARATORY MATHEMATICS

This unit is intended to cater for the needs of students whose background in mathematics is either weak or does not reach the equivalent of Senior Mathematics B. It is intended to provide the concepts and skills needed for successful study of those units within the university which assume a background equivalent to Senior Mathematics B. This unit is incompatible with a grade of High Achievement in Senior Mathematics B. The aim of this unit is to develop your mathematical skills in and understanding of algebra, functions and graphing, differential and integral calculus of one variable and to interpret and solve simple, real world problems using these skills. **Assumed knowledge:** Year 10 Level 6 Mathematics is assumed knowledge. **Credit points:** 12 **Contact hours:** 4 per week **Campus:** Gardens Point **Teaching period:** 2011 SEM-1 and 2011 SEM-2

MAB120 ALGEBRA AND CALCULUS

This unit introduces and reviews the elementary concepts of function, calculus, matrices and vectors with special reference to applications in science, technology and business where appropriate. Topics covered include the algebra of complex numbers, elementary functions (polynomial, trigonometric, exponential and logarithmic) and their properties, differentiation and integration methods and principles, geometric and algebraic applications of vectors and the solution of linear systems using matrices. **Antirequisites:** MAN120 **Assumed knowledge:** Grade of at least Sound Achievement in Senior Mathematics B (or equivalent) or MAB105 is assumed knowledge **Equivalents:** MAB100, MAB125, MAB180 **Credit points:** 12 **Contact hours:** 4 per week **Campus:** Gardens Point **Teaching period:** 2011 SEM-1, 2011 SEM-2 and 2011 SUM

MAB121 CALCULUS AND DIFFERENTIAL EQUATIONS

Building upon the foundations established in MAB120 or Senior Maths C, this unit addresses the significant role of mathematical modelling using differential equations for the description and resolution of simple and complex problems relevant to real world situations. The formulation and solution of such problems is supported by appropriate advanced mathematical concepts used for function approximation, differentiation and integration. Undertaking this unit will allow you to develop your problem solving skills, especially in the context of advanced mathematical techniques applied to ordinary differential equations used to model real world problems. You will also gain a deeper understanding of the concepts of the derivative and the integral, and how these may be used in applied contexts. **Antirequisites:** MAN121 **Assumed knowledge:** Grade of at least Sound Achievement in Senior Mathematics C (or equivalent) or MAB120 or MAB100 or MAB125 **Equivalents:** MAB111, MAB126, MAB131, MAB182 **Credit points:** 12 **Contact hours:** 4 per week **Campus:** Gardens Point **Teaching period:** 2011 SEM-1, 2011 SEM-2 and 2011 SUM

NQB201 PLANET EARTH

Earth Science impacts every aspect of modern life. Hence, the concepts of Earth Science are fundamental not only to the field of Geology, but also to Environmental Science, natural resource management, civil engineering and society at large. Planet Earth provides an introduction to Earth Science, including earth materials, geologic history, geological process at the Earth’s surface, and the complex interplay between the lithosphere, atmosphere, hydrosphere and biosphere through geologic time. Thus, Planet Earth is a foundation unit for further studies in Geology and Environmental Science and also serves as a broad introduction to the world we live on. **Equivalents:** NRB230 **Credit points:** 12 **Contact hours:** 4 per week **Campus:** Gardens Point **Teaching period:** 2011 SEM-2

NQB202 HISTORY OF LIFE ON EARTH

This unit aims to provide you with an understanding of the processes of evolution and the changing environmental conditions through time that influenced the patterns of the evolution of life on this planet. The unit will provide you with practical experience in fossil plant and animal identification, classification and morphological interpretation. It will also enable you to apply palaeontological information to interpret the evolutionary history of higher taxa and the changing ancient depositional environments through time. **Equivalents:** NRB240 **Credit points:** 12 **Contact hours:** 4 per week **Campus:** Gardens Point **Teaching period:** 2011 SEM-2

NQB311 MINERALOGY

Minerals are the building blocks of rocks which comprise the solid Earth. The study of minerals is essential for understanding the structure and composition of the earth and the detailed processes of the rock cycle. Mineralogy forms the basis for petrology (the study of the genesis of rocks) and geochemistry, and is thus essential for Geoscience. The unit may also be of interest to chemists. **Equivalents:** NRB333 **Credit points:** 12 **Contact hours:** 4 per week **Campus:** Gardens Point **Teaching period:** 2011 SEM-1

NQB314 SEDIMENTARY GEOLOGY
This unit provides students with an introduction to sedimentology; both sediments and sedimentary rocks. The unit focuses on the link between the range of features preserved in sedimentary rocks and what those features tell us about sedimentary processes, depositional environments and the burial history of the rocks. The sedimentological processes and depositional environments observed in the modern world are discussed and used as a foundation for interpreting the evidence preserved in the ancient sedimentary rock record, in turn revealing much about earth processes in geologic history.

Assumed knowledge: NQB201 is assumed knowledge.

Equivalents: NRB331

Credit points: 12

Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1

NQB411 PETROLOGY OF IGNEOUS AND METAMORPHIC ROCKS

Igneous and metamorphic rocks compose the bulk of the Earth. Understanding what these rocks are and how they form is an essential part of the study of geology and is fundamental to a wide range of higher level units. This unit builds upon the knowledge and skills acquired in the prerequisite unit (NQB311 Mineralogy) by focusing on the description, classification and origins of igneous and metamorphic rocks. This unit aims to allow you to develop the theoretical and practical skills necessary to describe, classify and interpret igneous and metamorphic rocks.

Prerequisites: NQB311 or NRB333
Equivalents: NRB436
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-2

NQB412 STRUCTURAL GEOLOGY AND FIELD METHODS

Structural geology, the deformation of earth materials, is one of the main elements in the core curriculum in geology. It is also essential to other subdisciplines of geology, such as foundation engineering and petroleum and mineral exploration. Geologists need to be able to describe and map structures, to understand the mechanical principles of rock deformation, and to be able to manipulate and calculate structural data. This unit fosters the skill of critical three- and four-dimensional analysis that usually sets geoscientists apart from other scientists and technologists.

Prerequisites: NQB314 or NRB331
Equivalents: NRB434
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-2

NQB502 FIELD METHODS IN NATURAL RESOURCE SCIENCES

Field experience is an essential part of the professional training of geologists, environmental scientists, ecologists, and natural resource specialists in general. The theory and practice of methods to interpret, measure, map, and monitor important natural resource features and characteristics are essential to the study of geological, ecological and environmental systems. Methods of survey, mapping and interpretation are necessary skills for resource assessment, geo-exploration, environmental impact assessment, land evaluation, baseline studies, and ecological investigations. There are varying emphases on these outcomes depending on the type of field survey you undertake in this unit.

Prerequisites: (NQB321 or NQB411) and (NQB302 or NQB412)
Assumed knowledge: 36 credit points of second level science units in selected major is assumed knowledge. NQB302 and NQB403 for Env Sc, NQB321 for Ecol, NQB411 and NQB412 for Geosc
Equivalents: NRB601
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1

NQB513 GEOPHYSICS

Geophysics is an integral branch of geology, providing many of the most useful methods of imaging the subsurface of the earth. These methodologies are useful in disciplines as diverse as plate tectonics, oil and mineral exploration, hydrogeology, environmental geology, engineering geology, and seismic hazards. The aim of the unit is to provide you with the core knowledge and skills of geophysical measurements, processing of data, and geological interpretation of geophysical data.

Prerequisites: (NQB201 or NRB230) and (NQB412 or NRB434)
Equivalents: NRB534
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-2

NQB612 BASIN ANALYSIS AND PETROLEUM GEOLOGY

The aim of the unit is to provide you with a fundamental working knowledge of sedimentary strata at regional and basin-wide scales, so as to allow you to solve problems in the exploration and modern environmental management sectors. This unit fosters the skill of critical three- and four-dimensional analysis that usually sets geoscientists apart from other scientists and technologists, and develops an understanding of exploration and production aspects of the fossil fuel industries. Undertaking this unit, you will acquire: the conceptual and technical tools to enable you to rationally interpret the distribution of rock units in space and time with emphasis on predicting the occurrences of petroleum resources; an understanding of the genesis and setting of hydrocarbon resources; and an understanding of the techniques of exploration, evaluation and utilisation of petroleum.

Prerequisites: (NQB413 or NRB437) and (NQB513 or NRB534). NQB513 can be studied in the same teaching period as NQB612
Equivalents: NRB636
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-2
NQB613 PLATE TECTONICS
This unit considers geological observations in the context of a unifying theory. It examines lithospheric plates, plate geometries, Earth morphology, relative and absolute plate movements, stresses of plate interactions, types of plate boundaries, and orogenesis. It also examines the development of the most important geologic theory of the 20th century.
Prerequisites: (NQB412 or NRB434) and (NQB314 or NRB331) and (NQB411 or NRB436) and (NQB513 or NRB534). NQB513 can be studied in the same teaching period as NQB613
Equivalents: NRB635
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-2

NQB614 GROUNDWATER SYSTEMS
This unit focuses on the origin, occurrence and movement of groundwater; aquifer properties; chemistry and quality of groundwater; exploration methods for groundwater; drilling methods and well testing equipment; assessment of groundwater problems, both supply and quality; and introduction to modelling of groundwater systems. Groundwater resources of Australia are covered and current issues. Lectures are supported by desktop exercises. Students will obtain practical experience with pump tests and computer modelling. There is interaction with government and private sector hydrogeologists, and a field site visit for hands-on well testing.
Prerequisites: NQB302 or NRB301 or ENB383
Equivalents: NRB633
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-2

NQB615 GEOCHEMISTRY
Through lecture, discussion and problem solving exercises, this unit introduces the application of geochemistry, phase equilibria, and thermodynamics to demonstrate the origin and evolution of igneous and metamorphic rocks. Problem-solving exercises synthesise field, petrographic and geochemical data to develop quantitative petrogenetic models and enhance critical thinking and written communication skills. Field study is an important component of this unit.
Equivalents: NRB536
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1

SCB110 SCIENCE CONCEPTS AND GLOBAL SYSTEMS
You will undertake interdisciplinary study of the physical, geological and biological concepts relating to the origins of life; from the creation of matter and planets, to the emergence of life in all its complexity, culminating in evolution of earth ecosystems. Human influences, overlaid upon earth's complex systems, will be examined as to their type, extent, and impact. In counterpoint, you will explore the breadth of philosophical developments underlying our search for knowledge; fundamental thoughts and ideas that span the last 2,500 years of human history. Ultimately, these concepts evolved through the development of a scientific method and we explore its workings in relation to the ongoing enterprise of human understanding.
Credit points: 12
Contact hours: 4.5 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1

SCB112 CELLULAR BASIS OF LIFE
Scientists from all disciplines need an appreciation and a broad overview of the characteristics and functioning of the five groups of living organisms (bacteria, protists, fungi, plants and animals), and their interactions with the inanimate world. SCB112 Cellular Basis of Life is a first semester unit that is essential for many students undertaking courses requiring biological knowledge. Through integrated lecture and laboratory classes, this unit provides you with a foundation for later more advanced studies in your course or major (eg such as medical science, biomedical science, pharmacy, optometry, biochemistry, biotechnology, microbiology, geosciences, ecology, business and education among others). The aim of this unit is to introduce you to the wide diversity of living organisms while emphasising the unity of life processes at the cellular, biochemical and biophysical levels.
Antirequisites: LOB182, LSB118
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1 and 2011 SEM-2

SCB123 PHYSICAL SCIENCE APPLICATIONS
Physics principles underpin all of the sciences and 'new technologies'. This unit adopts an investigative team-based approach to provide students with an appreciation of fundamental concepts in physical science, together with experience in the application of these concepts to a range of 'real world' problems. The unit should be taken in the first year of study as the fundamental principles introduced here.
will be built upon in later units in the context of each science student's major discipline area. Employers in cutting-edge industries expect science graduates to have effective strategies for problem solving, skills for collaborative work and scientific communication and research skills. This unit aims to develop these skills by applying the fundamental concepts of physical science to problems in a team environment.

Credit points: 12
Contact hours: 4.5 per week
Campus: Gardens Point
Teaching period: 2011 SEM-2

SCB222 EXPLORATION OF THE UNIVERSE

This unit provides an introduction to optical observational astronomy; instrumentation; celestial sphere and astronomical coordinates; observations of constellations, stars, planets, clusters and other interesting celestial objects. The theory includes: optics of telescopes; properties of light; determination of physical properties of stars; nebulae; stellar spectra and classification; historical models of the solar system; Kepler’s law, gravitation; physical geology of the planets and formation of the solar system; phenomena of astronomical origin; brief introduction to stars and galaxies. This course includes practical exercises and field trips.

Credit points: 12
Contact hours: 5 per week
Campus: Gardens Point
Teaching period: 2011 SEM-2

SCB500 INDUSTRY PROJECT

In this unit students will apply scientific methods and quantitative techniques to real work issues. Students will develop an appropriate plan for analysing and resolving an industry issue under the guidance of both a QUT supervisor and an associate supervisor from an industry partner. At the end of the unit students will present both an oral seminar and a written report.

Credit points: 12
Contact hours: 52
Campus: Gardens Point
Teaching period: 2011 SEM-1, 2011 SEM-2 and 2011 SUM