Bachelor of Applied Science (Biochemistry) (SC01)

Year offered: 2010
Admissions: Yes
CRICOS code: 003502J
Course duration (full-time): 3 Years
Course duration (part-time): 6 Years
Domestic fees (indicative): 2010: CSP $2,200 (indicative) per semester
International Fees (indicative): 2010: $11,750 (indicative) per semester
Domestic Entry: February and July
International Entry: February and July* (Conditions apply for July entry)
QTAC code: 418011
Past rank cut-off: 77
Past OP cut-off: 12
OP Guarantee: Yes
Assumed knowledge: English (4, SA) and Maths B (4, SA)
Preparatory studies: For information on acquiring assumed knowledge visit http://www.studentservices.qut.edu.au/apply/ug/info/knowledge.jsp
Total credit points: 288
Standard credit points per full-time semester: 48
Standard credit points per part-time semester: 24
Course coordinator: Dr Marion Bateson
Discipline coordinator: Dr Perry Hartfield
Campus: Gardens Point

Overview
Biochemistry is the study of the chemical processes that occur in living organisms including the structure and function of cell processes and biochemical molecules such as DNA and proteins. Biochemistry underpins many of the disciplines required for research, development and industrial applications in medical and agricultural fields.

Recommended Study
Chemistry and Biological Science.

Why Choose this course
QUT biochemistry students acquire the necessary theoretical knowledge and practical laboratory and computer skills to understand and solve a wide range of biochemical problems. Your hands-on practical experience commences from your first year of study.

Advanced topics include the purification and manipulation of various molecules using sophisticated laboratory apparatus. You will also learn molecular simulation techniques using specialist computer programs available in our teaching laboratories. This practical experience combined with a thorough grounding in biochemistry theory will allow you to compete favourably in negotiating your future career.

Career Outcomes
Strong employment opportunities for biochemists exist around the world in both the private and government sectors of industry. QUT graduates skilled in biochemistry can find career opportunities in diagnostic and analytical laboratories, universities, hospitals and health departments, pharmaceutical companies, primary and agricultural industries and departments, food industry laboratories, environmental agencies, and veterinary pathology laboratories. Alternative career paths in the marketing and sales of biotechnology equipment or commercialisation and management of biological products and processes are available.

For those wishing to enter research in honours and PhD programs, biochemistry offers a huge scope of intriguing and intellectually rewarding projects.

Professional Recognition
Graduates are eligible for membership of the Australian Society for Biochemistry and Molecular Biology (ASBMB), and in some cases the Australasian Association of Clinical Biochemists (AACB).

Your course
Year 1
You will undertake introductory core studies in a range of scientific areas including life sciences, chemistry, physics, mathematics and environmental science to give you a solid foundation for your future studies. Following these introductory studies you should be in a position to confirm your choice of a major area of study.

Year 2
You will build on the concepts introduced in first year and you will consider molecular interactions in cell metabolism and function and the flow of energy and information within the cell.

Year 3
You will encounter current experimental theory and practice in biochemistry, including the exciting new developments in molecular modelling, metabolism and proteomics. You will be provided with knowledge and analytical skills that will serve you well in the workforce or lead to further study.

Biochemistry Full-time Course Structure: First Semester Entry

Year 1, Semester 1
SCB110 Science Concepts and Global Systems
SCB111 Chemistry 1
SCB112 Cellular Basis of Life
Select ONE unit from:
MAB101 Statistical Data Analysis 1
MAB105 Preparatory Mathematics
MAB120 Algebra and Calculus
MAB121 Calculus and Differential Equations
NOTE:
 1. Students without a Sound Achievement (4 semesters) in Maths A should enrol in MAB105.
 2. Students with a Sound Achievement in Maths B and NOT wishing to major in Physics should enrol in MAB101.
 3. Students with a Sound Achievement in Maths C and wishing to major in Physics should enrol in MAB121.
 4. Students without a Sound Achievement in Maths C and wishing to major in Physics should enrol in MAB120.
 5. Students without a Sound Achievement in Maths B or Maths A should consult with the course coordinator.

Year 1, Semester 2
SCB120 Plant and Animal Physiology
 Note: students taking forensic science or chemistry second majors should replace SCB120 Plant and Animal Physiology with SCB131 Experimental Chemistry
SCB121 Chemistry 2
SCB122 Cell and Molecular Biology
SCB123 Physical Science Applications

Year 2, Semester 1
LQB381 Biochemistry: Structure and Function
LQB383 Molecular and Cellular Regulation
 Plus TWO other units selected according to the second major requirements

Year 2 Semester 2 *
LQB481 Biochemical Pathways and Metabolism
LQB483 Molecular Biology Techniques
 Plus TWO other units selected according to the second major requirements

Year 3, Semester 1 *
LQB581 Functional Biochemistry
LQB582 Biomedical Research Technologies
 Plus TWO other units selected according to the second major requirements

Year 3, Semester 2 *
LQB681 Biochemical Research Skills
LQB682 Protein Biochemistry and Bioengineering
 Plus TWO other units selected according to the second major requirements

Recommended Second Majors:
 Biotechnology, Chemistry, Forensic Science, Life Science Technologies, Microbiology

* Elective Unit for all Majors:
SCB500 Industry Project
NOTE: SCB500 Industry Project is a unit that will be offered as an elective in all majors. This unit requires 84 credit points of Level 2 and/or 3 Science units, so it may only be taken at the completion of Year 2 in Summer or during Year 3.

Biochemistry Full-time Course Structure: Mid-Year Entry

Mid-Year (July) Entry
FOR DOMESTIC STUDENTS: Due to the careful construction of scientific knowledge demanded in the SC01 degree, mid-year entry requires some compromises. There are two ways to construct a mid-year program:

1. Take foundation units and their follow-up units together, rather than in sequence. This will be very challenging, but will allow you to start second year units at the start of the next year. Please contact either the course coordinator or the discipline coordinator to devise a suitable program of study. Please note: as this option usually involves taking units from different levels concurrently, which may not timetable appropriately, in some cases it may not be possible to complete within the standard time frame.

2. Take three units per semester for the first three semesters, adding one semester to your degree completion time. This allows you to do your first year units in the correct sequence, at a slightly more leisurely pace, while still being officially a full-time student. You may enrol in a fourth unit (level 2 unit from your chosen major) provided you have the necessary pre-requisites. This is the recommended option.

FOR INTERNATIONAL STUDENTS: Mid-year
entry is only available under certain circumstances. Please contact the Course Coordinator to discuss available midyear entry and advance standing options on a case by case basis.

Year 1, semester commencing July
- SCB111 Chemistry 1
- SCB112 Cellular Basis of Life
- SCB120 Plant and Animal Physiology

Year 2, semester commencing February
- SCB110 Science Concepts and Global Systems
- SCB121 Chemistry 2
 - Plus either MAB101 Statistical Data Analysis 1
 - Or MAB105 Preparatory Mathematics

Biochemistry Part-time Course Structure

Students interested in undertaking this major part-time should consult the discipline coordinator.

UNIT SYNOPSES

LQB381 BIOCHEMISTRY: STRUCTURE AND FUNCTION

This unit extends basic organic chemistry theory to the level of the biological macromolecules. A clear understanding of the structure and function of these molecules is essential to a student's understanding of the metabolism of living cells. Hence this biomolecular unit is a fundamental prerequisite for all advanced units in the various disciplines in the field of life sciences.

Prerequisites: (SCB121 and SCB122) or (SCB111 and SCB121) or SCB113
Antirequisites: LSB275 and LSB325 and LSB308
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2010 SEM-1

LQB383 MOLECULAR AND CELLULAR REGULATION

Molecular and Cellular Regulation is a second year unit and is a continuation and expansion of topics introduced in SCB112 Cellular Basis of Life and SCB122 Cell & Molecular Biology. Molecular and Cellular Regulation strengthens the focus on the molecular and genetic aspects of cellular processes and the consequences to the organism of failure of these basic processes. Topics taught relate to gene structure and regulation in prokaryotes and eukaryotes and the role of gene expression in the development of complex organisms. Related concepts such as cell signalling, communication, proliferation and survival are further developed in this unit.

Prerequisites: SCB122 or LSB238
Antirequisites: LSB468 and LSB338
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2010 SEM-1

LQB481 BIOCHEMICAL PATHWAYS AND METABOLISM

The study of biochemistry and cell biology, along with molecular biology, provides students with the knowledge required for the proper understanding of the structure and function of living organisms at the molecular level. As such, this unit extends the studies begun in the unit LQB381 Biochemistry into the metabolic processes occurring in living cells, and provides students with a basis for further studies in biochemistry as well as support for other units in the third year of the course.

Prerequisites: LQB381 or LSB308
Antirequisites: LSB275, LSB325, LSB408
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2010 SEM-2

LQB483 MOLECULAR BIOLOGY TECHNIQUES

Molecular biology and recombinant DNA technologies have important roles in many areas within the life sciences, including medicine, agriculture, cell biology, environmental science and forensics. Through close alignment of theoretical concepts and practical skills, this lab-based unit expands on molecular themes introduced in earlier cell and molecular biology units to develop expertise in modern recombinant DNA techniques and an understanding of strategies used to identify and manipulate genes. The close relationship between theory and practice in this unit is designed to develop competence, independence and critical thinking that will provide students with a solid foundation for advanced molecular biology studies presented in several third level units.

Prerequisites: LSB238 or SCB122
Antirequisites: LSB468, LSN468, LSN483
Assumed knowledge: LQB383 is recommended prior study
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2010 SEM-2
LQB581 FUNCTIONAL BIOCHEMISTRY
This unit will study advanced biochemical concepts with a focus on metabolism, signalling pathways, systems and networks that coordinate and regulate the functional behaviour of cells and tissues.
Credit points: 12 Contact hours: 5 per week Campus: Gardens Point Teaching period: 2010 SEM-1

LQB582 BIOMEDICAL RESEARCH TECHNOLOGIES
This unit will study the technical principles and practical techniques that are essential for advancing research and development in biochemistry and biotechnology.
Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2010 SEM-1

LQB681 BIOCHEMICAL RESEARCH SKILLS
In the real world, the design and completion of successful research and/or business projects demand that individuals gather information, solve problems, work effectively as a part of a team and analyse and communicate results in a critical manner. This unit offers opportunities for you to develop these skills that are valued highly by potential employers and research project leaders. This unit is a capstone biochemistry unit designed to prepare you as a prospective graduate for independent and group research.
Prerequisites: LQB381 or LSB308. Students with equivalent study can apply for a requisite waiver
Equivalents: LSB607 Credit points: 12 Contact hours: 5 per week Campus: Gardens Point Teaching period: 2010 SEM-2

LQB682 PROTEIN BIOCHEMISTRY AND BIOENGINEERING
This unit is designed to give you the essential concepts and techniques driving research and industrial biotechnology so that you will be equipped for multiple careers in the biological sciences. The skills you develop will allow you to enter a practical laboratory environment or to apply your knowledge in related areas of evaluations of technologies and intellectual property.
Prerequisites: LQB381 or LSB308 or LSN101 and LSN102
Antirequisites: LSB605, LSB608 Credit points: 12 Contact hours: 5 per week Campus: Gardens Point Teaching period: 2010 SEM-2

MAB101 STATISTICAL DATA ANALYSIS 1
Experiments, observational studies, sampling, and polls; data and variables; framework for describing and manipulating probability; independence; Binomial and Normal distributions; population parameters and sample statistics; concepts of estimation and inference; standard error; confidence intervals for means and proportions; tests of hypotheses on means and proportions (one sample and two independent samples); inference using tables of counts; modelling relationships using regression analysis; model diagnosis; use of statistical software.
Antirequisites: BSB123, EFB101, MAB141, MAN101
Assumed knowledge: Grade of at least Sound Achievement in Senior Mathematics B (or equivalent) or MAB105 is assumed knowledge. Credit points: 12
Contact hours: 4 per week Campus: Gardens Point Teaching period: 2010 SUM-2, 2010 SEM-1 and 2010 SEM-2

MAB105 PREPARATORY MATHEMATICS
This unit is a substitute for Senior Mathematics B for those students who need the equivalent background for the successful study of units which assume it. It includes: basic number facts, natural numbers, integers, rational numbers, real numbers and their operations; basic algebra; functions and equations, graphs, linear functions, equations and applications; systems of linear equations; quadratic, exponential, logarithmic and trigonometric functions, properties and applications; introduction to calculus; rates of change, derivatives, rules of differentiation, second derivatives, maxima and minima and applications; integration and applications. This unit is incompatible with an exit assessment of High Achievement or better in Senior Mathematics B.
Assumed knowledge: Year 10 Level 6 Mathematics is assumed knowledge Credit points: 12
Contact hours: 4 per week Campus: Gardens Point Teaching period: 2010 SEM-1 and 2010 SEM-2

MAB120 ALGEBRA AND CALCULUS
This unit introduces and reviews the elementary concepts of function, calculus, matrices and vectors with special reference to applications in science, technology and business where appropriate. Topics covered include the algebra of complex numbers, elementary functions (polynomial, trigonometric, exponential and logarithmic) and their properties, differentiation and integration methods and principles, geometric and algebraic applications of vectors and the solution of linear systems using matrices.
Assumed knowledge: Grade of at least Sound Achievement in Senior Mathematics B (or equivalent) or MAB105 is assumed knowledge Equivalents: MAB100, MAB125, MAB180 Credit points: 12
Contact hours: 4 per week Campus: Gardens Point Teaching period: 2010 SEM-1, 2010 SEM-2 and 2010 SUM

MAB121 CALCULUS AND DIFFERENTIAL EQUATIONS
This unit extends the areas of function and calculus introduced in MAB120 by introducing series representations for functions and more advanced methods of differentiation and integration for functions of one variable. A strong connection to real world problems is made by introducing the use of differential equations in modelling, and exploring appropriate methods of solution. Practical calculations of
volumes and surface areas of solids of revolution extend your interpretations of the definite integral. Taylor and Fourier series are introduced as a means of approximating functions by sums of polynomials and periodic functions. Some more advanced methods for indefinite integrals, such as partial fraction decomposition, are also introduced.

Assumed knowledge: Grade of at least Sound Achievement in Senior Mathematics C (or equivalent) or MAB125 or MAB180 or MAB120 is assumed knowledge

Equivalents: MAB111, MAB126 Credit points: 12

Contact hours: 4 per week **Campus:** Gardens Point **Teaching period:** 2010 SEM-1, 2010 SEM-2 and 2010 SUM

SCB110 SCIENCE CONCEPTS AND GLOBAL SYSTEMS

You will undertake interdisciplinary study of the physical, geological and biological concepts relating to the origins of life; from the creation of matter and planets, to the emergence of life in all its complexity, culminating in evolution of earth ecosystems. Human influences, overlaid upon earth’s complex systems, will be examined as to their type, extent, and impact. In counterpart, you will explore the breadth of philosophical developments underlying our search for knowledge: fundamental thoughts and ideas that span the last 2,500 years of human history. Ultimately, these concepts evolved through the development of a scientific method and we explore its workings in relation to the ongoing enterprise of human understanding.

Credit points: 12 **Contact hours:** 4.5 per week **Campus:** Gardens Point **Teaching period:** 2010 SEM-1

SCB111 CHEMISTRY 1

This unit covers the fundamentals of general and physical chemistry. Topics include atomic and molecular structure, introduction to chemical bonding, reaction stoichiometry, thermochemistry, gas phase chemistry, reaction kinetics, equilibrium, acids, bases, buffers, oxidation, reduction and electrochemistry. The practical program involves experiments illustrating a range of chemical reaction types including precipitation reactions, acid-base chemistry and redox chemistry using analytical experimental methods. A comprehensive tutorial program (CHELP) complements the lectures and is designed to assist students to develop the problem solving skills required for further study in chemistry and related sciences.

Antirequisites: SCB113 Credit points: 12 **Contact hours:** 4.5 per week **Campus:** Gardens Point **Teaching period:** 2010 SEM-1 and 2010 SEM-2

SCB112 CELLULAR BASIS OF LIFE

A study of life processes in all five groups of living organisms (bacteria, protists, fungi, plants and animals). Traditional topics in biology are integrated with recent research advances in molecular and cellular biology to provide a comprehensive foundation for later units in the medical, biotechnological and ecological sciences. The unit begins by constructing cells from the four quantitatively important groups of biological molecules (proteins, lipids, carbohydrates and nucleic acids). Molecular and evolutionary aspects of genetics are then introduced, with the great diversity of reproductive strategies found among organisms being emphasised. Finally, bioenergetics (photosynthesis and respiration) and its relevance to environmental issues is outlined.

Antirequisites: LSB118 Credit points: 12

Contact hours: 4 per week **Campus:** Gardens Point **Teaching period:** 2010 SEM-1 and 2010 SEM-2

SCB120 PLANT AND ANIMAL PHYSIOLOGY

Regardless of which area of biology you decide to specialise in, you will need to understand the complex interactions between cells, tissues, organs and organ systems that comprise multi-cellular organisms. Although many living processes can be explained at the levels of biochemistry, biophysics and cell biology, a true understanding of complex, multicellular organisms requires integration of knowledge drawn from all of these areas, combined with the more complex physiological and structural levels you will learn about in this unit. The knowledge gained in this and other first level units provides you with the conceptual framework necessary to understand processes occurring from the cellular to the whole organism level and to higher levels of organisation.

Prerequisites: SCB112 **Equivalents:** NRB270 Credit points: 12 **Contact hours:** 4.5 per week **Campus:** Gardens Point **Teaching period:** 2010 SEM-2

SCB121 CHEMISTRY 2

Chemistry is the central science. This is a unit of fundamental importance as it covers the background and general principles that underpin understanding in many Science and Health related disciplines, particularly in regards to the chemistry of life. In this unit students will be introduced to fundamental aspects of chemistry including the electronic structure of atoms, chemical bonding and molecular structure. From this basis students will develop an understanding of the fundamentals of organic chemistry including chirality, functional groups and organic reactions which will lead to important bio-inorganic molecules and coordination complexes.

Prerequisites: (SCB111 or PCB142) . SCB111 can be studied in the same teaching period

Antirequisites: SCB113 Credit points: 12 **Contact hours:** 4.5 per week **Campus:** Gardens Point **Teaching period:** 2010 SEM-1 and 2010 SEM-2

SCB122 CELL AND MOLECULAR BIOLOGY

SCB122 Cell and Molecular Biology 1 equips students with a comprehensive understanding of the molecular basis of the
cell. This unit expands on the basic principles and concepts relating to cell structure, function, perpetuation and specialisation introduced in SCB112 and introduces students to fundamental molecular mechanisms central to the organisation of the cell. Students will be shown how macromolecular interactions are crucial to information flow and heredity. Students are taught the relationships between chromosomes, genes and cellular function and ultimately how these may determine an organism's phenotype. This unit underpins cell biology and molecular biology units that are offered in second year Life Science units. SCB122 is also ideal for interfaculty students (e.g., Education, Business, Arts) who will undertake no further life science studies.

Prerequisites: SCB112
Antirequisites: LSB238
Credit points: 12
Contact hours: 4.5 per week
Campus: Gardens Point
Teaching period: 2010 SEM-2

SCB123 PHYSICAL SCIENCE APPLICATIONS

Physics principles underpin all of the sciences and 'new technologies'. This unit adopts an investigative team-based approach to provide students with an appreciation of fundamental concepts in physical science, together with experience in the application of these concepts to a range of 'real world' problems. The unit should be taken in the first year of study as the fundamental principles introduced here will be built upon in later units in the context of each science student's major discipline area. Employers in cutting-edge industries expect science graduates to have effective strategies for problem solving, skills for collaborative work and scientific communication and research skills. This unit aims to develop these skills by applying the fundamental concepts of physical science to problems in a team environment.

Credit points: 12
Contact hours: 4.5 per week
Campus: Gardens Point
Teaching period: 2010 SEM-2

SCB500 INDUSTRY PROJECT

In this unit students will apply scientific methods and quantitative techniques to real work issues. Students will develop an appropriate plan for analysing and resolving an industry issue under the guidance of both a QUT supervisor and an associate supervisor from an industry partner. At the end of the unit students will present both an oral seminar and a written report.

Credit points: 12
Contact hours: 52
Campus: Gardens Point
Teaching period: 2010 SEM-1, 2010 SEM-2 and 2010 SUM