Bachelor of Applied Science - Medical Radiation Technology (Radiotherapy Technology) (PH38)

Year offered: 2011
Admissions: No
CRICOS code: 037588F
Course duration (full-time): 3 Years
Domestic Fees (indicative): 2011: CSP $2,671 (indicative) per semester
International Fees (indicative): 2011: $11,250 (indicative) per semester
Domestic Entry: February. For 2011 entry, please refer to ST31 Bachelor of Radiation Therapy
QTAC code: 418192
Past rank cut-off: 94 and a successful questionnaire (see Additional Entry Requirements)
Past OP cut-off: 4 and a successful questionnaire (see Additional Entry Requirements)
Assumed knowledge: English (4, SA), Maths B (4, SA) and Physics (4, SA)
Preparatory studies: For information on acquiring assumed knowledge visit http://www.qut.edu.au/assumed-knowledge
Total credit points: 288
Standard credit points per full-time semester: 48
Course coordinator: Associate Professor Pam Rowntree
Campus: Gardens Point

Overview
QUT is currently the only university in Queensland to offer a radiotherapy technology undergraduate qualification. This course leads to employment as a radiation therapist, assisting cancer patients at the most difficult time in their lives.

Career Outcomes
As a radiation therapist in a radiotherapy department of a major hospital or private institution, you may become a member of a team treating cancer patients and be responsible for planning and delivering prescribed radiation doses.

Professional Recognition
On graduation, you will be eligible for provisional accreditation by the Australian Institute of Radiography (AIR). Full accreditation requires the completion of an additional professional development year of clinical experience.

English Language Skills (Applicable to health practitioners applying for registration)
All applicants must be able to demonstrate English language skills at IELTS academic level 7 or equivalent.

Test results from examinations will generally need to be obtained within two years prior to applying for registration.

Other Majors
See also the separate entry for the following major in this course: Bachelor of Applied Science - Medical Radiation Technology (Medical Imaging Technology).

International Student Entry
This course is not available for international student entry.

Other Course Requirements
You will be required to undertake clinical experience in hospital departments and private practices during the course and, as a result, will have direct patient contact during your placement and may be exposed to blood and body fluids of patients. You must be vaccinated for Hepatitis B and must provide a post-vaccination pathological report or similar certification showing proof of immunity, prior to undertaking the first clinical placement.

Cardiopulmonary resuscitation (CPR) certification is also required to undertake clinical placements. In addition, you should satisfy criteria related to health status, including declaration of height, physical disabilities, treatment of nervous condition, any drug/alcohol disorder and a current immunisation status (specifically Hepatitis B) as part of the online enrolment process.

Blue Card: A current blue card authorised with QUT may be required prior to commencing the clinical placement components of this course. For more information visit www.bluecard.qut.edu.au, and ensure that you allow adequate time for processing your application and issuing of the card in order to avoid clinical experience delays.

Limits on grades of 3
A new policy concerning grades of 3 came into effect from 1 January 2009 (QUT MOPP C/5.2). With effect from this date grades of 3 are no longer considered a conceded or low pass but are classified as a fail grade. Any grades of 3 awarded prior to 1 January 2009 retain the conceded pass status and will be counted for graduation purposes up to the maximum number of grades of 3 permitted for your course. Grades of 3 incurred in units that commence after 1 January 2009 will not count towards your degree. Further information is available on the Student Services website.

Your Course
Year 1
You will develop a solid grounding in anatomy and medical physics along with introductory knowledge of patient healthcare needs, professional communication techniques and ethical, legal and accountability issues. Introductory studies in medical radiation and radiotherapy techniques are complemented with practical sessions using equipment in clinical departments. You will learn a range of skills including patient data acquisition, radiation dosimetry and the basic techniques of treatment delivery including beam direction and beam defining devices.

Year 2
You will progress to further studies in anatomy and pathology as well as the planning of complex techniques like photon therapy, electron therapy, and megavoltage therapy, including techniques for specific sites. The use of computer software to assist with the optimisation of isodose distributions will be covered along with issues related to the interaction of radiation with tissue, dose measurement and related quality assurance procedures. You will undertake practical exercises in hospital clinical departments along with your first clinical placement period, allowing you to gain real experience in a working environment.

Year 3
You will continue to develop your skills through clinical placements in hospitals and practical classes using equipment in clinical settings. You will cover the techniques of medical imaging used in the detection of cancer, along with future directions of three dimensional treatment planning. You will progress to more complex and specialised techniques for child patients and patients with communicable disease, along with the latest developments and techniques complementary to the modern radiotherapy treatment of cancer. You will learn important information about the biological effects of ionising radiation and the philosophy and protocol in radiation protection and quality assurance.

Further Information
For further information about this course, please contact:

Radiotherapy Technology Coordinator
Mrs Julie Burbery
Phone: +61 7 3138 2273
Email: julie.burbery@qut.edu.au

Course Coordinator
Associate Professor Pam Rowntree
Phone: +61 7 3138 2346
Email: p.rowntree@qut.edu.au

Course structure for students who commenced in 2009 and 2010

<table>
<thead>
<tr>
<th>Year 1, Semester 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSB145</td>
</tr>
<tr>
<td>PCB007</td>
</tr>
<tr>
<td>PCB178</td>
</tr>
<tr>
<td>PCB272</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 1, Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSB245</td>
</tr>
<tr>
<td>PCB286</td>
</tr>
<tr>
<td>PCB287</td>
</tr>
<tr>
<td>PCB675</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 2, Semester 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSB321</td>
</tr>
<tr>
<td>LSB345</td>
</tr>
<tr>
<td>PCB389</td>
</tr>
<tr>
<td>PCB396</td>
</tr>
<tr>
<td>PCB397-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 2, Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSB445</td>
</tr>
<tr>
<td>PCB397-2</td>
</tr>
<tr>
<td>PCB489</td>
</tr>
<tr>
<td>PCB495</td>
</tr>
<tr>
<td>PCB496</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 3, Semester 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB587</td>
</tr>
<tr>
<td>PCB591-1</td>
</tr>
<tr>
<td>PCB593</td>
</tr>
<tr>
<td>PCB595</td>
</tr>
<tr>
<td>PCB672-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 3, Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB591-2</td>
</tr>
<tr>
<td>PCB672-2</td>
</tr>
<tr>
<td>PCB687</td>
</tr>
<tr>
<td>PCB695</td>
</tr>
</tbody>
</table>

Course structure for students who commenced prior to 2009

<table>
<thead>
<tr>
<th>Year 1, Semester 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB587</td>
</tr>
<tr>
<td>PCB591-1</td>
</tr>
<tr>
<td>PCB593</td>
</tr>
<tr>
<td>PCB595</td>
</tr>
<tr>
<td>PCB672-1</td>
</tr>
</tbody>
</table>
LSB145 ANATOMY 1
The aim of this unit is to understand and apply anatomical terminology to the description of cell structure, primary tissues, the muscular system, and the integumentary system, with a primary focus on detailed osteology and arthrology of the human body. The relationship between structure and function is investigated within these systems.

Equivalents: LSB131 Credit points: 12 Contact hours: 5 per week Campus: Gardens Point Teaching period: 2011 SEM-1

LSB245 ANATOMY 2 AND INTRODUCTORY PATHOLOGY
As an extension of LSB145, this human anatomy unit introduces the anatomical terminology used in the description of the cardiovascular system, lymphatic system, respiratory system, digestive system, urinary system, endocrine system, reproductive system and the anatomy of the eye and ear. The relationship between structure and function is investigated within these systems. Furthermore an examination of the application of scientific methods to the study of the general principles of disease processes and the major diseases of organ systems is included as a secondary component to this unit.

Prerequisites: LSB145 Assumed knowledge: MIT students should enrol in PCB276 in the same semester if not already completed. RT students should enrol in PCB287 in the same semester if not already completed.

Equivalents: LSB231 Credit points: 12 Contact hours: 5 per week Campus: Gardens Point Teaching period: 2011 SEM-2

LSB321 SYSTEMATIC PATHOLOGY
This unit includes the applications of general pathology to the study of diseases of the organ systems: cardiovascular, respiratory, alimentary, urogenital, nervous, musculoskeletal, endocrine, haematologic and skin.

Prerequisites: LSB245 Antirequisites: LSB361, LSB367, LSB475 Credit points: 12 Contact hours: 3 per week Campus: Gardens Point Teaching period: 2011 SEM-1

LSB345 REGIONAL & IMAGING ANATOMY 1
This unit focuses on the regional anatomy of the head, neck, upper limb, lower limb and the anatomy of the structures of the above regions which are visualised by medical imaging modalities.

Prerequisites: LSB145 and LSB245 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-1

Potential Careers:
Radiation Therapist.

UNIT SYNOPSES
This unit focuses on the regional anatomy of the back, thorax, abdomen and pelvic regions and the anatomy of the structures of the above regions which are visualised by medical imaging modalities.

Prerequisites: LSB145 and LSB245
Assumed knowledge: Systematic Anatomy (LSB145 and LSB245 content)
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-2

PCB007 PATIENT CARE IN PROFESSIONAL PRACTICE
This is an introductory subject emphasising the appropriate response to the healthcare needs of patients and the ethical, legal and clinical accountability of the medical radiation technologist for patient care. It includes resuscitation techniques, client-professional communication and interpersonal behaviour and skills.
Equivalents: PYB074
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1

PCB178 PRINCIPLES OF MEDICAL RADIATIONS
This unit provides an overview of the physical principles of the various medical imaging modalities and techniques. It includes an overview of techniques used in the diagnosis and treatment of cancer.
Credit points: 12
Contact hours: 5 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1

PCB272 RADIATION PHYSICS
This unit includes the following: atomic structure, radioactivity, interaction of x-rays with matter; Radiation dosimetry; thermal physics, temperature, heat, thermal expansion; electric and magnetic fields, motion of charged particles; X-rays - properties and nature; X-ray tube construction and design; diagnostic and therapy tubes; high voltage generation, transformers, rectifiers, linear accelerators; ratings of X-ray tube, tube failure.
Assumed knowledge: Senior Maths B and Senior Physics are assumed knowledge.
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1

PCB286 TREATMENT PLANNING 1
This unit is an introduction to the techniques of radiotherapy treatment planning including patient data acquisition and radiation dosimetry.
Prerequisites: PCB178 and LQB183 and PCB272
Credit points: 12
Contact hours: 6 per week
Campus: Gardens Point
Teaching period: 2011 SEM-2

PCB287 RADIATION THERAPY 1
This unit introduces the basic techniques of radiotherapy treatment and equipment. Practical sessions are completed in clinical departments.
Prerequisites: PCB007 and PCB178 and LQB183
Credit points: 12
Contact hours: 6 per week
Campus: Gardens Point
Teaching period: 2011 SEM-2

PCB389 CLINICAL RADIOThERAPY 1
The development and demonstration of clinical skills promotes integration of theoretical understanding and practical skills. The student will gain skills and knowledge which will enable them to carry out the basic skills of a radiation therapist under supervision.
Prerequisites: PCB286 and PCB287 and LSB245
Credit points: 6
Contact hours: 200 over 5 weeks
Campus: Gardens Point
Teaching period: 2011 SEM-1 and 2011 SEM-2

PCB396 TREATMENT PLANNING 2
This unit is an extension of the study of treatment planning introduced in PCB286 to the planning of complex techniques of photon therapy and electron therapy.
Prerequisites: PCB286 and PCB287 and LSB245 and PCB272
Credit points: 12
Contact hours: 5 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1

PCB397 RADIATION THERAPY 2
Oncology and technique are an essential component of radiation therapy skills and application of fundamental principles to routine treatment practice is essential. Students will need to gain practical skills in order to become a competent radiation therapist and this module provides them with the underpinning theory and practice. Students at this level are expected to engage with the literature base in order to support their work and they will have specific support for this via the presentation.
Prerequisites: PCB286 and PCB287 and LSB246
Credit points: 6
Contact hours: 5 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1

PCB397 RADIATION THERAPY 2
This unit includes the principles and applications of megavoltage therapy including techniques for specific sites. Practical exercises are performed in clinical departments.
Prerequisites: PCB397-1
Credit points: 6
Contact hours: 5 per week
Campus: Gardens Point
Teaching period: 2011 SEM-2

PCB489 CLINICAL RADIOThERAPY 2
This unit includes clinical experiences in approved departments in techniques of radiation therapy.
Prerequisites: PCB389 and PCB396
Credit points: 6
Contact hours: 200 over 5 weeks
Campus: Gardens Point
Teaching period: 2011 SEM-2 and 2011 SUM

PCB495 TREATMENT PLANNING 3
This unit includes a study of planning hardware and software to include two-dimensional planning and the development of concepts to an advanced level of understanding of computer-assisted optimisation of isodose distributions.

Prerequisites: LQB389 and PCB396
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-2

PCB496 RADIOTHERAPY EQUIPMENT

It is important for you as a future radiation therapist to understand the principles of operation of radiotherapy equipment and the basic physics of the interaction of radiation with tissue. The aim of this unit is to teach you about the physics underlying the operation of linear accelerators and associated topics such as the interaction of radiation with tissue and the measurement of radiation dose.

Prerequisites: PCB178
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-2

PCB587 RADIATION THERAPY 3

This course of lectures and practical exercises focuses on the specialised techniques of orthovoltage and superficial therapy. It also includes the study of radioactivity including methods of radiation detection, radioactive equilibrium and production of radioisotopes, the principles and application of brachytherapy.

Prerequisites: PCB397, PCB489, PCB495 and LSB445
Credit points: 12
Contact hours: 6 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1

PCB590 CLINICAL RADIOTHERAPY 3

This unit offers clinical experience in radiotherapy treatment and planning including specialised radiotherapy techniques as discussed in PCB587 and PCB595.
(12 credit points achieved at completion of PCB591-1 and PCB590-2.)

Prerequisites: (PCB590-1 or PCB591-1) and PCB489 and PCB587
Credit points: 12
Contact hours: 6 per week
Campus: Gardens Point
Teaching period: 2011 SEM-2 and 2011 SUM

PCB591 CLINICAL RADIOTHERAPY 3

This unit offers clinical experience in radiotherapy treatment and planning including specialised radiotherapy techniques as discussed in PCB587 and PCB595.
(12 credit points achieved at completion of PCB591-1 and PCB590-2.)

Prerequisites: PCB489
Credit points: 6
Contact hours: 200 over 5 weeks
Campus: Gardens Point
Teaching period: 2011 SEM-2

PCB591 CLINICAL RADIOTHERAPY 3

This unit offers clinical experience in radiotherapy treatment and planning including specialised radiotherapy techniques as discussed in PCB587 and PCB595.
(12 credit points achieved at completion of PCB591-1 and PCB590-2.)

Prerequisites: PCB489
Credit points: 12
Teaching period: 2011 SEM-1, 2011 SEM-2 and 2011 SUM

PCB591 CLINICAL RADIOTHERAPY 3

This unit includes the use of computers in the planning of non-standard and complex radiotherapy treatment including arc and rotation techniques, irregular field techniques and 3 dimensional plans. Use of 3D computer planning system is included.

Prerequisites: PCB397-2 and PCB489 and LSB445 and PCB495
Credit points: 12
Contact hours: 6 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1

PCB595 TREATMENT PLANNING 4

This unit includes a study of planning hardware and software to include two-dimensional planning and the development of concepts to an advanced level of understanding of computer-assisted optimisation of isodose distributions.

Prerequisites: PCB590-1 and PCB591-1 and PCB587 and PCB595
Credit points: 12
Teaching period: 2011 SEM-2 and 2011 SUM

PCB593 DIGITAL IMAGE PROCESSING

This unit provides students with a basic understanding of the computer techniques used in image processing and reconstruction. Specific areas of study include the following: the structure of a digital image; image display techniques; grey scale palettes and look-up tables; Fourier transform theory; convolution theory; image processing hardware; image processing techniques; eg analysis, enhancement and restoration; spatial filtering; Fourier space filtering; methods of image reconstruction; 3D volume and surface rendering; applications of image processing in medicine, astronomy and remote sensing, etc.

Prerequisites: PCB375-2 or PCB496 or PQB250
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SUM

PCB595 PROJECT

The purpose of this unit is to enable you to carry out an independent enquiry within a professionally related area. An introduction to the research process is important preparation for future professional studies. This full year unit will assist you to develop skills in research and reporting writing as independent learners. During semester two you will prepare a report and poster on a chosen topic.
(12 credit points achieved at completion of PCB672-1 and PCB672-2.)

Prerequisites: PCB672-1
Credit points: 6
Campus: Gardens Point
Teaching period: 2011 SEM-2

PCB672 PROJECT

This is a supervised project involving either application of existing theoretical practical knowledge or a literature survey of a selected relevant topic.
(12 credit points achieved at completion of PCB672-1 and PCB672-2). Introductory lectures in research methods and statistics are provided.

Prerequisites: PCB476 or PCB397-2
Credit points: 6
Campus: Gardens Point
Teaching period: 2011 SEM-1
PCB675 RADIATION SAFETY AND BIOLOGY
Medical radiations procedures are the principal cause of non background radiation exposure. It is therefore important that you understand potential hazards of exposure to ionising radiation and techniques of protection. An understanding of relevant codes of practice is also required. The aim of this unit is to provide you with a basic understanding of aspects of radiation biology and radiation safety relevant to your future employment as a Medical radiation technologist.
Prerequisites: PCB272 Credit points: 12 Contact hours: 5 per week Campus: Gardens Point Teaching period: 2011 SEM-2

PCB687 SPECIALISED RADIOTHERAPY TECHNIQUE
This unit includes a study of specialised radiotherapy techniques including techniques applicable to the child patient and patients with communicable disease, total body photon and electron therapy. It also covers the principles, strengths and stage of development of techniques that are integral or complementary to the modern radiotherapy treatment of cancer.
Prerequisites: PCB587 and PCB595 Credit points: 12 Contact hours: 6 per week Campus: Gardens Point Teaching period: 2011 SEM-2

PCB695 ADVANCED TREATMENT PLANNING TOPICS
This unit is a study of the principles and techniques of medical imaging used in the detection of cancer including MRI, PET and SPECT. This study also covers future directions of three dimensional treatment planning, and IMRT.
Prerequisites: PCB595 and PCB587 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-2