Bachelor of Games and Interactive Entertainment/Bachelor of Mathematics (IX64)

Year offered: 2011
Admissions: Yes
CRICOS code: 063031E
Course duration (full-time): 4 years
Domestic Fees (indicative): 2011: CSP $3,028 (indicative) per semester
International Fees (indicative): 2011: $11,375 (indicative) per semester
Domestic Entry: February
International Entry: February
QTAC code: 418672
Past rank cut-off: 81
Past OP cut-off: 10
OP Guarantee: Yes
Assumed knowledge: English (4,SA), Maths B (4,SA)
Preparatory studies: For information on acquiring assumed knowledge visit http://www.qut.edu.au/assumed-knowledge
Total credit points: 384
Standard credit points per full-time semester: 48
Course coordinator: Michael Docherty (Games and Interactive Entertainment Major); Dr Tim Moroney (Mathematics Major)
Campus: Gardens Point

Course Overview
This double degree gives you the opportunity to use your problem-solving skills to develop realistic games in a competitive gaming environment. A decade ago, people probably wouldn't have noticed if the cape the game hero was wearing didn't flap in the wind as he ran, or that the boxes in the corner of the room of the dungeon didn’t fall over when they are run into in a fight. Nowadays, serious gamers notice and demand this type of realism in their virtual worlds. This is where your maths and problem-solving capabilities come into play. Complex formulae are used in games design to create realistic scenes, and knowledge of mathematics will certainly aid your understanding.

Students undertake core units from both their Bachelor of Mathematics and Bachelor of Games and Interactive Entertainment. They can subsequently select from the strands of applied, computational, discrete and financial mathematics; mathematical modelling; operations research; scientific computation and visualisation; statistics and statistical modelling in their Bachelor of Mathematics and from the majors of animation, digital media, game design or software technologies in their Bachelor of Games and Interactive Entertainment degree.

Career Outcomes
A graduate may find work in film and television special effects or in the games and interactive entertainment environments making games look more realistic (such as concept artist).

Professional Recognition
Membership of the Australian Mathematical Society, the Statistical Society of Australia and the Australian Society for Operations Research is available. This course is accredited by the Australian Computer Society (ACS). ACS accreditation is internationally recognised by the Seoul Accord.

Cooperative Education Program
The Faculty's Cooperative Education Program gives you the opportunity of 10-12 months paid industry placement during your course where you can integrate real experience with what you’re learning in your degree. Companies that QUT’s Coop Ed students have worked with include Energex, Boeing, CITEC, CSC Mining, Environmental Protection Agency, Dialog, UNiTAB, RACQ and many Queensland Government departments. The Coop Ed Program is available to Australian citizens and permanent residents only.

Find out more about the Cooperative Education Program.

Limits on grades of 3
A new policy concerning grades of 3 came into effect from 1 January 2009 (QUT MOPP C/5.2). With effect from this date grades of 3 are no longer considered a conceded or low pass but are classified as a fail grade. Any grades of 3 awarded prior to 1 January 2009 retain the conceded pass status and will be counted for graduation purposes up to the maximum number of grades of 3 permitted for your course. Grades of 3 incurred in units that commence after 1 January 2009 will not count towards your degree. Further information is available on the Student Services website.

Further Information
For further information about this course, please contact the following:

Games and Interactive Entertainment
Michael Docherty
Phone: +61 7 3138 2782
Email: enquiry.scitech@qut.edu.au
Mathematical Sciences
Dr Tim Moroney
Phone: +61 7 3138 2262
Email: t.moroney@qut.edu.au

Financial Support
You should consider applying for an industry-sponsored mathematics bursary to help you financially throughout your studies. For further information visit Scholarships.

Deferral
Domestic students can defer their offer in this course for one year. In exceptional circumstances up to 12 months of additional deferment may be granted.

Find out more on deferral.

Course Structure for Students with Four Semesters of Senior Mathematics B and Senior Mathematics C

Year 1, Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>INB180</td>
<td>Computer Games Studies</td>
</tr>
<tr>
<td>INB182</td>
<td>Introducing Design</td>
</tr>
<tr>
<td>MAB121</td>
<td>Calculus and Differential Equations</td>
</tr>
<tr>
<td>MAB122</td>
<td>Algebra and Analytic Geometry</td>
</tr>
</tbody>
</table>

Year 1, Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>INB181</td>
<td>Introduction to Games Production</td>
</tr>
<tr>
<td>INB104</td>
<td>Building IT Systems</td>
</tr>
<tr>
<td>MAB101</td>
<td>Statistical Data Analysis 1</td>
</tr>
<tr>
<td>MAB220</td>
<td>Computational Mathematics 1</td>
</tr>
</tbody>
</table>

Year 2, Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>INB103</td>
<td>Industry Insights</td>
</tr>
<tr>
<td></td>
<td>Games & Interactive Entertain Major Unit</td>
</tr>
<tr>
<td>MAB210</td>
<td>Statistical Modelling 1</td>
</tr>
<tr>
<td>MAB312</td>
<td>Linear Algebra</td>
</tr>
</tbody>
</table>

Year 2, Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Games & Interactive Entertain Major Unit</td>
</tr>
<tr>
<td></td>
<td>Games & Interactive Entertain Major Unit</td>
</tr>
<tr>
<td></td>
<td>Level 2 or 3 Maths Unit</td>
</tr>
<tr>
<td></td>
<td>Level 2 or 3 Maths Unit</td>
</tr>
</tbody>
</table>

Year 3, Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Games & Interactive Entertain Major</td>
</tr>
<tr>
<td></td>
<td>Games & Interactive Entertain Major</td>
</tr>
<tr>
<td>MAB311</td>
<td>Advanced Calculus</td>
</tr>
</tbody>
</table>

Year 3, Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Level 2 or 3 Maths Unit</td>
</tr>
</tbody>
</table>

Year 4, Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>INB379</td>
<td>Game Project Design</td>
</tr>
<tr>
<td></td>
<td>Games & Interactive Entertain Major</td>
</tr>
<tr>
<td></td>
<td>Level 2 or 3 Maths Unit</td>
</tr>
<tr>
<td></td>
<td>Level 2 or 3 Maths Unit</td>
</tr>
</tbody>
</table>

Year 4, Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>INB380</td>
<td>Games Project</td>
</tr>
<tr>
<td></td>
<td>Level 2 or 3 Maths Unit</td>
</tr>
<tr>
<td></td>
<td>Level 2 or 3 Maths Unit</td>
</tr>
</tbody>
</table>

Course Structure for Students with Four Semesters of Senior Mathematics B Only

Year 1, Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>INB180</td>
<td>Computer Games Studies</td>
</tr>
<tr>
<td>INB182</td>
<td>Introducing Design</td>
</tr>
<tr>
<td>MAB101</td>
<td>Statistical Data Analysis 1</td>
</tr>
<tr>
<td>MAB120</td>
<td>Algebra and Calculus</td>
</tr>
</tbody>
</table>

Year 1, Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>INB181</td>
<td>Introduction to Games Production</td>
</tr>
<tr>
<td>INB104</td>
<td>Building IT Systems</td>
</tr>
<tr>
<td>MAB121</td>
<td>Calculus and Differential Equations</td>
</tr>
<tr>
<td>MAB122</td>
<td>Algebra and Analytic Geometry</td>
</tr>
</tbody>
</table>

Year 2, Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>INB103</td>
<td>Industry Insights</td>
</tr>
<tr>
<td></td>
<td>Games and Interactive Entertain Major Unit</td>
</tr>
<tr>
<td>MAB220</td>
<td>Computational Mathematics 1</td>
</tr>
<tr>
<td>MAB312</td>
<td>Linear Algebra</td>
</tr>
</tbody>
</table>

Year 2, Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>INB103</td>
<td>Industry Insights</td>
</tr>
<tr>
<td></td>
<td>Games and Interactive Entertain Major Unit</td>
</tr>
<tr>
<td>MAB210</td>
<td>Statistical Modelling 1</td>
</tr>
<tr>
<td>MAB311</td>
<td>Advanced Calculus</td>
</tr>
</tbody>
</table>

Page 2/14
Year 3, Semester 1
Games and Interactive Entertain Major Unit
MAB311 Advanced Calculus
Level 2 or 3 Maths Unit

Year 3, Semester 2
Games and Interactive Entertain Major Unit
Level 2 or 3 Maths Unit

Year 4, Semester 1
INB379 Game Project Design
Level 2 or 3 Maths Unit

Year 4, Semester 2
INB380 Games Project
Level 2 or 3 Maths Unit

Bachelor of Games & Interactive Entertainment Majors Course structure (Block B) 2011

Animation
Select 8 units from:
KIB105 Animation and Motion Graphics
KIB108 Animation History and Practices
KVB105 Drawing for Design
KVB106 Drawing for Animation
KIB220 Animation Production
KIB203 Introduction to 3D Computer Graphics
KIB221 Animation: CG Toolkit
KIB225 Character Development, Conceptual Design and Animation Layout
KIB316 Virtual Environments
KIB325 Real-Time 3D Computer Graphics

Digital Media
KIB101 Visual Communication
KIB102 Visual Interactions
INB345 Mobile Devices
INB386 Advanced Multimedia Systems

Game Design
INB280 Fundamentals of Game Design
INB272 Interaction Design
KIB201 Concept Development for Game Design and Interactive Media
KIB202 Enabling Immersion
INB282 Games Level Design
INB281 Advanced Game Design
INB107 Visualisation I
INB214 Design for Interactive Media

Software Technologies*
* Requirements for this Major is a SA or better in Queensland Maths B (or equivalent)
INB270 Programming
MAB281 Mathematics for Computer Graphics
INB210 Databases
INB250 Computer Architectures and Systems
INB370 Software Development
INB371 Data Structures and Algorithms
INB381 Modelling and Animation Techniques
INB382 Real Time Rendering Techniques
OR
INB383 AI for Games

Mathematics Units

Level 2 Units
MAB311 Advanced Calculus
MAB312 Linear Algebra
MAB313 Mathematics of Finance
MAB314 Statistical Modelling 2
MAB315 Operations Research 2
MAB413 Differential Equations
MAB414 Applied Statistics 2
MAB420 Computational Mathematics 2
MAB422 Mathematical Modelling
MAB461 Discrete Mathematics
MAB480 Introduction to Scientific Computation
Level 3 Units - at least 4 units must be selected

MAB521 Applied Mathematics 3
MAB522 Computational Mathematics 3
MAB524 Statistical Inference
MAB525 Operations Research 3A
MAB533 Statistical Techniques
MAB536 Time Series Analysis
MAB613 Partial Differential Equations
MAB623 Financial Mathematics
MAB624 Applied Statistics 3
MAB625 Operations Research 3B
MAB640 Industry Project
MAB672 Advanced Mathematical Modelling

Note: MAB523 Introduction to Quality Management and MAB621 Discrete Mathematics do not contribute to the mandatory 48 credit points minimum from Level 3 Mathematics units.

Potential Careers:
Actuary, Computer Game Programmer, Market Research Manager, Mathematician, Quantitative Analyst, Statistician.

UNIT SYNOPSES

DEB103 VISUALISATION 1
Designers work in three dimensions and thus employ a variety of tools to think about and communicate three-dimensional ideas. This unit introduces you to the skills and techniques you’ll need to support this design visualisation with a focus on analogue media, drawing skills and simple model making. Some of them are common to all the disciplines in the course while others are specific to one or more disciplines of architecture, industrial design, interior design and landscape architecture.

Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-1

INB103 INDUSTRY INSIGHTS
This unit aims to develop your awareness of the career possibilities in the ICT industry and to equip you with some of the essential skills required of an ICT professional. The unit helps you to derive a roadmap for your career; to enable you to identify the qualities, skills and interests you need to possess, to plan your career path. The unit will also introduce you the inter-disciplinary nature of ICT careers.

Equivalents: ITB002 Credit points: 12 Contact hours: 3 per week Campus: Gardens Point Teaching period: 2011 SEM-1 and 2011 SEM-2

INB104 BUILDING IT SYSTEMS
Today's modern integrated technology is built on IT systems which run in a range of contexts (e.g. mobile computing, robotics, and web-based systems) using a range of technological solutions such as programming and scripting, databases, web development and network programming. This unit is an integrated introduction to information technology designed to engage, inspire and inform and will demonstrate the important role that technical system design and development plays in achieving robust operation of a large variety of technological solutions. This unit will give you substantial hands-on, practical learning experiences and will motivate you through engagement in the creative, explorative and meaningful development of technological artefacts that operate in real world contexts.

Equivalents: ITB001 Credit points: 12 Contact hours: 3 per week Campus: Gardens Point Teaching period: 2011 SEM-1 and 2011 SEM-2

INB180 COMPUTER GAMES STUDIES
This unit is designed to give you a clear understanding of the socio-cultural issues that affect the computer game industry. Through critical review of games and games industry literature, playing games and actively participating in classroom discussion you will develop your capacity to join in the discourse about the design, impact and future direction of computer games in our society.

Antirequisites: INN180, ITB750 Credit points: 12 Contact hours: 3 per week Campus: Gardens Point Teaching period: 2011 SEM-1

INB181 INTRODUCTION TO GAMES PRODUCTION
This subject will provide you with knowledge and skills in games production. By gaining an overview of the production process, you will learn how the technology and the people involved integrate into a coherent and efficient manufacturing process. By the end of this subject you will have the knowledge to conceive, create, integrate and optimise tools and personnel into a complete games production system.

Antirequisites: INN181 Equivalents: ITB751, ITN751 Credit points: 12 Contact hours: 3 per week Campus: Gardens Point Teaching period: 2011 SEM-2

INB182 INTRODUCING DESIGN
Please note: this unit is only available to BGIE (Bachelor of Games and Interactive Entertainment) students. The act of designing is a common link between many disciplines such
as game design, software design, animation and character design, architecture, industrial design, etc. This unit offers a broad and generic introduction to the act of designing in a discipline context free environment.

This unit is designed to expose you to a range of experiences not possible within the confines of the usual university routine. It also calls upon you to exert physical and mental efforts that may be different in degree and nature to your usual coursework. Through these opportunities this unit seeks to introduce to you the ways of thinking like a designer.

Antirequisites: DEB101
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1

INB210 DATABASES

Databases and database systems are essential items that support many aspects of everyday life in modern society. All graduates from a course in Information Technology will be expected by employers to understand the concepts and terminology of databases. The aim of this unit is to introduce you to the structure and role of databases in modern organisations.

Antirequisites: INN210
Equivalents: ITB004
Credit points: 12
Contact hours: 3 per week
Campus: Gardens Point
Teaching period: 2011 SEM-2

INB270 PROGRAMMING

This unit aims to give you a positive introduction to the skills required in solving computational problems and implementing solutions in a programming or scripting language. Although some theoretical aspects of computer programming are introduced briefly, the overall emphasis of the unit is programming practice. The unit emphasises generic programming concepts and related problem-solving strategies. The skills you learn in this unit will be applicable to a wide variety of commonly-used, industrially-significant programming and scripting languages.

Prerequisites: INB104 or ENB246
Antirequisites: INN270
Equivalents: ITB003
Credit points: 12
Contact hours: 3 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1 and 2011 SEM-2

INB280 FUNDAMENTALS OF GAME DESIGN

Modern games production is a complex process involving various businesses and organisations, working with budgets in the tens of millions. One of the roles within a game production team is that of the game designer. It is crucial that a game designer understands how to create a game world, the rules that govern game play and other high level design tasks. This subject provides an introduction to game design, by starting with high level conceptual design tasks before moving to more concrete tasks.

Prerequisites: INB180
Equivalents: ITB016, ITN016
Credit points: 12
Contact hours: 3 per week
Campus: Gardens Point
Teaching period: 2011 SEM-2

INB281 ADVANCED GAME DESIGN

This unit will provide you with theoretical and practical knowledge of advanced games design concepts; that is, specific activities undertaken by game designers and their purpose. By the end of this unit you will have the knowledge to identify problems and suggest solutions for innovative game designs, as well as understand how to carry out the process of designing a game yourself. You will possess practical and theoretical knowledge of game design issues such as: how to design a game level, how to design a task and reward a player for completing it, how to ensure that the player knows how to progress through the game and how to design characters whose behaviour and dialogue provide clues and prompts to the player.

Prerequisites: INB280
Equivalents: ITB017
Credit points: 12
Contact hours: 3 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1

INB282 GAMES LEVEL DESIGN

Prerequisites: INB281
Credit points: 12
Teaching period: 2011 SEM-1

INB345 MOBILE DEVICES

This unit provides the opportunity for exploring new and emerging mobile devices and wireless technology including iPhone, Netbook, 3G, WiMax, and RFID. Students will critically review and understand how they can be used for current contexts such as government, business, education and social community, as well as emerging ‘wilderness’ environments with no power and wired communication. Students will appreciate the impacts of these devices and be inspired for the current and future opportunities in ICT usage trends.

Credit points: 12
Contact hours: 3 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1
INB370 SOFTWARE DEVELOPMENT
Understanding software development is an integral part of the IT industry for software engineers. Software development relies on object technologies, programming techniques and numerous code libraries provided by language developers and third party vendors. Integrated Development Environments, unit testing frameworks, automated and continuous build tools and versioning systems are all becoming part of the tool set modern software developers must be familiar with. This unit is designed to introduce these technologies and techniques to show how software can be rapidly developed.

Prerequisites: INB270 or ITB003 Credit points: 12 Contact hours: 3 per week Campus: Gardens Point Teaching period: 2011 SEM-1

INB371 DATA STRUCTURES AND ALGORITHMS
The purpose of this unit is to ensure that you have a sound knowledge of modern programming techniques and their use in providing medium-scale software solutions. This unit will teach you to decompose a problem and produce a modular solution to a programming task. The principles to analyse algorithms for efficiency will also be introduced. In addition, you will acquire the necessary skills for you to use the tools available in common development environments, such as Microsoft Visual Studio.

Prerequisites: INB270 or ITB003 Antirequisites: ITB711, ITB702, INN371 Credit points: 12 Contact hours: 3 per week Campus: Gardens Point Teaching period: 2011 SEM-1

INB379 GAME PROJECT DESIGN
INB379 GIE Game Project Design (P1) extends your work on the role, design, and plan of a computer game concept. The unit covers the conceptualisation and game design stages up to the game design pitch. If the project is given a green light by the assessment panel, it may be developed later in the P2 unit.

Prerequisites: Completion of 144 credit points of study Antirequisites: ITB009 Assumed knowledge: Completion of at least 144 credit points of IT04 units, including all first year core units is assumed Credit points: 12 Contact hours: 1 hour lecture - 2 hour supervisor meetings Campus: Gardens Point Teaching period: 2011 SEM-1 and 2011 SEM-2

INB380 GAMES PROJECT
This unit seeks to give you the opportunity to apply, under appropriate guidance, the knowledge and skills gained in your course to date and to execute a substantial related project. The unit also aims to allow you to develop the critical professional skills of working within a cross-disciplinary team and, through implementation of your project, develop the understanding of the role of careful planning, scope control and task management in ensuring that the project is successful.

Prerequisites: INB379 or INB305 Antirequisites: ITB020 Assumed knowledge: Students undertaking this unit must be enrolled in the Bachelor of Games and Interactive Entertainment Credit points: 24 Contact hours: 3 per week Campus: Gardens Point Teaching period: 2011 SEM-1 and 2011 SEM-2

INB381 MODELLING AND ANIMATION TECHNIQUES
The development of computer graphics tools is a significant application within the IT, Games and related industries, relying heavily on software engineering methodologies. These tools, such as CAD systems, 3D modelling systems and games engines, are used in such industries as advertising, engineering, manufacturing, simulation for education and training, computer games, film special effects, etc. Modelling techniques are intrinsic to a 3D graphics system, especially one used for real time animation. With increased CPU and GPU power, the ability to animate in real time is allowing more sophisticated interaction and the merger of games/simulation and film. The unit will provide you with the knowledge and skills to use an industry standard graphics API to implement graphics applications and to develop a basic real time animation system using an industry standard language.

Prerequisites: INB371 and MAB281 Equivalents: ITB746 Credit points: 12 Contact hours: 3 per week Campus: Gardens Point Teaching period: 2011 SEM-2

INB382 REAL TIME RENDERING TECHNIQUES
This unit will provide you with knowledge and skills in basic to advanced techniques in real-time rendering using shading languages. You will be able to implement a high-quality real-time rendering system in an industry standard API.

Prerequisites: INB371, INB381 and MAB281 Antirequisites: ITB648 and ITB649 Equivalents: ITB747 Credit points: 12 Contact hours: 3 per week Campus: Gardens Point Teaching period: 2011 SEM-1

INB383 AI FOR GAMES
The aim of this unit is to provide students with an intermediate to advanced level course in computer game AI, involving algorithmic and utility-based approaches to solving a wide range of problems in the interactive entertainment and game industries. You will gain both practical and theoretical knowledge about a range of AI techniques applied in computer games. You will be able to identify and...
explain different types of AI agents, describe their algorithms using a pseudo code convention, identify and explain different structures and algorithms used to represent and solve a range of problems in computer game AI.

Prerequisites: INB371 or MAB281 Antirequisites: INB304 completed in semester 1 2009 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-1

KIB102 VISUAL INTERACTIONS
This unit further develops interface design skills for communications technologies including design priorities, interaction, visual systems, refinement of concepts, project analysis and problem solving through presentation models.

Prerequisites: KIB101 or KIB801 or KPB101 or KPB150 or KPB155 Equivalents: KIB802 Credit points: 12 Contact hours: 3.5 per week Campus: Kelvin Grove Teaching period: 2011 SEM-2

INB385 MULTIMEDIA SYSTEMS
This unit will explore the concepts underpinning multimedia systems and the role played by these technologies in the overall knowledge of a computer professional. You will learn to: design and develop different kinds of interactive multimedia applications; understand the bank of knowledge in cultural developments surrounding the emergence of multimedia technologies; analyse design and processes that contribute to the production of a creative work, using contemporary hardware and software technologies; develop the creative potential of temporal media forms and their placement and use within new media works; understand principles and conventions associated with the interpretation and production of meaning through interactive visual representation.

Prerequisites: INB103 or ITB002 Antirequisites: ITB257 Credit points: 12 Contact hours: 3 per week Campus: Gardens Point Teaching period: 2011 SEM-1

INB386 ADVANCED MULTIMEDIA SYSTEMS
This advanced level unit will give you high level design and development skills in some of the current and emerging areas of the new media. Web delivered applications, stand-alone systems and installations will be included. It will endeavour to give you an in-depth understanding of interactive Multimedia Systems. You will be given the theoretical basis and practical skills to motivate you in the design and creation of a state-of-the-art system in this discipline. In the process it will encourage a professional team approach appropriate to the industry environment.

Prerequisites: INB385 (Special considerations may apply) Equivalents: ITB259, ITN259 Credit points: 12 Contact hours: 3 per week Campus: Gardens Point Teaching period: 2011 SEM-2

KIB105 ANIMATION AND MOTION GRAPHICS
This unit provides an introduction to animation and motion graphics concepts and practices, with an emphasis on principles of design in motion

Equivalents: KIB804 Credit points: 12 Contact hours: 3 per week Campus: Kelvin Grove Teaching period: 2011 SEM-2

KIB108 ANIMATION HISTORY AND PRACTICES
The unit is an introductory examination of the development of animation. It addresses social, cultural, economic and technological themes that have shaped notable practitioners and established animation as a significant medium for the expression of popular culture, artistic experiment and philosophical, social and political comment.

Equivalents: KIB825 Credit points: 12 Contact hours: 3 per week Campus: Kelvin Grove Teaching period: 2011 SEM-1

KIB201 CONCEPT DEVELOPMENT FOR GAME DESIGN AND INTERACTIVE MEDIA
This unit addresses theoretical issues associated with non-linear story structures and interactive narratives through the analysis of game structures, the creation of original game ideas and the application of techniques of information design to the structuring of non-narrative content. Addressing the creative and analytical roles of writers, conceptual designers and information designers in the context of interactive digital media and the Creative Industries.

Equivalents: KIB816 Credit points: 12 Contact hours: 3 per week Campus: Kelvin Grove Teaching period: 2011 SEM-1

KIB202 ENABLING IMMERSION
As creative practitioners within a highly networked technological society, it is important to develop a critical understanding of how the application of technology influences modes of communication, production processes and creative practices, particularly within the Creative Industries. This unit provides an introductory overview of the philosophies underlying applications of technology, and critically examines current applications in order to explore
creative visions of future technology.

Prerequisites: KIB201
Equivalents: KIB814
Credit points: 12
Contact hours: 3 per week
Campus: Kelvin Grove
Teaching period: 2011 SEM-1

KIB203 INTRODUCTION TO 3D COMPUTER GRAPHICS

The field of 3D computer graphics has grown from being a highly specialist field, supported by large film studios, into a vast and growing industry. Throughout film and television, scientific visualization, industrial and architectural design, physical modelling, animation and gaming; 3D visualisation has become a significant contributor to the construction of virtual worlds and the simulation of physical environments. This unit provides an introduction to the world of 3D graphics, paying particular attention to pre-production techniques, project management, 3D modelling techniques, and designing virtual environments. It establishes a foundation for advanced study in subsequent units on Real-time Computer Graphics and Virtual Environments. Theoretical understandings gained through lectures will be supplemented with technical skills in workshops, and applied to the production of 3D environments in design studios.

Credit points: 12
Contact hours: 3 per week
Campus: Kelvin Grove
Teaching period: 2011 SEM-1

KIB214 DESIGN FOR INTERACTIVE MEDIA

Designing for contemporary media requires a sophisticated understanding of how we effectively interact with new technologies, software applications, displays and environments. This unit focuses on the field of interaction design and user experience design. It develops an understanding of the theories, methods, and processes employed by Interaction Designers through a series of lectures and tutorials. These principles are then applied to authentic design briefs within design studios.

Prerequisites: KIB102 or KIB202 or KIB802 or KIP402
Equivalents: KIB210
Contact hours: 3 per week
Campus: Kelvin Grove
Teaching period: 2011 SEM-1

KIB220 ANIMATION PRODUCTION

Animation employs a studio-based production process that introduces you to workflows, practice-based investigations, critical thinking and problem-based learning. Animation: Studio Production will support you to build animation studio production skills by introducing design briefs, networking, teamwork and collaboration. This unit will focus particular attention on image-based solutions for the production of animated work. It will allow you to advance your skills and techniques in matte painting, image-based modeling, terrain and environment modeling, particle systems for environments, and 3D object creation and shading, as you develop an area of specialisation through personal investigation and self-directed inquiry.

Prerequisites: KIB105 and KVB106
Credit points: 12
Contact hours: 6 per week
Campus: Kelvin Grove
Teaching period: 2011 SEM-1

KIB221 ANIMATION: CG TOOLKIT

CG Toolkit offers an in-depth look at the tools of animated production from within a studio setting. Continuing from Animation Studio 1: Preproduction, this unit looks at the tools and the processes involved in creating high level successful 3D computer animations for game development, film or television production, web or emergent media.

Prerequisites: KIB105 or KIB804
Equivalents: KIB213
Credit points: 12
Contact hours: Up to 6 per week
Campus: Kelvin Grove
Teaching period: 2011 SEM-2

KIB225 CHARACTER DEVELOPMENT, CONCEPTUAL DESIGN AND ANIMATION LAYOUT

This unit emphasizes production in practice. By considering type and generic attributes within a technological context, you will be guided through the key concepts involved in the development of working drawings and final artworks.

Prerequisites: KIB111 or KIB203 or KIB107 or (KIB105 and KIB108 and KVB106)
Equivalents: KIB106, KIB807
Credit points: 12
Contact hours: 3 per week
Campus: Kelvin Grove
Teaching period: 2011 SEM-2

KIB230 INTERFACE AND INFORMATION DESIGN

With the advent of new technologies for communication, graphical user interfaces have become fundamental to the design of effective communication, and a key factor in the uptake, ease of use and experience of technology systems. This unit builds upon knowledge and skills acquired in units on visual communication and Web design to establish the knowledge and skills required to design and produce effective visual interfaces for technology applications such as Web, small screens in mobile media, and interactive displays. It will cover theories and principles of visual communication, information architecture and user experience design, which will be applied in the production of interfaces for interactive media and digital projects. The unit will be taught through a combination of lectures, tutorials and practical classes, in which skills and knowledge will be applied.

Prerequisites: KIB101 or KIB801
Equivalents: KIB211
Credit points: 12
Contact hours: 3 per week
Campus: Kelvin Grove
Teaching period: 2011 SEM-1

KIB309 EMBODIED INTERACTIONS

Interaction with technology has advanced beyond the desktop paradigm of mouse and keyboard to embodied interfaces that incorporate video tracking, audio input, and gestural interaction techniques. Applications range from wearable technology to tangible media installations. This
unit introduces an experimental field of interactive media design through the practical application of the processes and techniques of tangible media applications. Lectures, which provide the theoretical grounding of the study area, methodologies and examples of the application of tangible media are complemented by practical classes which extend the technical skills acquired in Programming for Designers and Artists and support the development of tangible media outcomes within design studios.

Prerequisites: KIB216 or KIB205 or INB385
Equivalents: KIB311
Credit points: 12
Contact hours: 3 per week
Campus: Kelvin Grove
Teaching period: 2011 SEM-1

KIB314 TANGIBLE MEDIA

This unit extends the understandings of tangible media interfaces and applications gained in the embodied media unit. In this unit students will develop a tangible media project from concept through to design, production, evaluation, and exhibition. Theoretical understandings on tangible media object design, interaction and installation gained through lectures will be supplemented with production skills in workshops, and applied to the development of tangible media works in design studios. Finished works will be displayed in a final exhibition where members of the public will interact with them.

Prerequisites: KIB309
Equivalents: KIB311
Credit points: 12
Contact hours: 3 per week
Campus: Kelvin Grove
Teaching period: 2011 SEM-2

KIB316 VIRTUAL ENVIRONMENTS

The field of 3D virtual environments, simulation, and visualization are used to produce sophisticated approaches to interaction design, social networking and game-play. This unit is designed to cater for both creative and technical practitioners. Extending the knowledge and skills developed in 3D Computer Graphics and Real-time environments, this unit develops an advanced understanding of virtual environments and 3D spaces. You will apply and extend principals of real-time modeling, texture acquisition for real-time environments, and interaction design in the 3D context. Students enrolled in this unit will work in project teams to produce a significant 3D interactive environment within the context of a design studio.

Prerequisites: KIB325
Equivalents: KIB310, KIB821
Credit points: 12
Contact hours: 3 per week
Campus: Kelvin Grove
Teaching period: 2011 SEM-2

KIB325 REAL-TIME 3D COMPUTER GRAPHICS

This unit provides the opportunity for extending the principles of 3D computer graphics into the emerging field of virtual environments that respond to interaction in real time. In this unit you will cover the principals of real-time modeling; texture acquisition for real-time environments and interaction design in the 3D context. This unit provides an opportunity where students studying 3D computer graphics can apply animation and interactive design principles to real-time spaces. These principles can be applied to the fields of game design and interactive 3D environments.

Prerequisites: KIB225
Equivalents: KIB310, KIB821
Credit points: 12
Contact hours: 3 per week
Campus: Kelvin Grove
Teaching period: 2011 SEM-1

KVB105 DRAWING FOR DESIGN

This is a studio based unit that introduces you to media, processes, strategies and traditions of drawing and associated imagery for use in animated media. The development of critical/reflective frameworks of traditional and contemporary practice underpins studio development.

Equivalents: KVB755
Credit points: 12
Contact hours: 4 per week
Campus: Kelvin Grove
Teaching period: 2011 SEM-1

KVB106 DRAWING FOR ANIMATION

This unit develops individual knowledge, concepts and skills to enable you to articulate and present capabilities of motion through drawing for contemporary animation practices.

Equivalents: KVB756
Credit points: 12
Contact hours: 3 per week
Campus: Kelvin Grove
Teaching period: 2011 SEM-2

MAB101 STATISTICAL DATA ANALYSIS 1

Experiments, observational studies, sampling, and polls; data and variables; framework for describing and manipulating probability; independence; Binomial and Normal distributions; population parameters and sample statistics; concepts of estimation and inference; standard error; confidence intervals for means and proportions; tests of hypotheses on means and proportions (one sample and two independent samples); inference using tables of counts; modelling relationships using regression analysis; model diagnosis; use of statistical software.

Antirequisites: BSB123, EFB101, MAB141, MAN101, MAB233
Assumed knowledge: Grade of at least Sound Achievement in Senior Mathematics B (or equivalent) or MAB105 is assumed knowledge.
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SUM-2, 2011 SEM-1 and 2011 SEM-2

MAB120 ALGEBRA AND CALCULUS

This unit introduces and reviews the elementary concepts of function, calculus, matrices and vectors with special reference to applications in science, technology and business where appropriate. Topics covered include the algebra of complex numbers, elementary functions (polynomial, trigonometric, exponential and logarithmic) and their properties, differentiation and integration methods and principles, geometric and algebraic applications of vectors and the solution of linear systems using matrices.
Antirequisites: MAN120 Assumed knowledge: Grade of at least Sound Achievement in Senior Mathematics B (or equivalent) or MAB105 is assumed knowledge
Equivalents: MAB100, MAB125, MAB180 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point
Teaching period: 2011 SEM-1, 2011 SEM-2 and 2011 SUM

MAB121 CALCULUS AND DIFFERENTIAL EQUATIONS
Building upon the foundations established in MAB120 or Senior Maths C, this unit addresses the significant role of mathematical modelling using differential equations for the description and resolution of simple and complex problems relevant to real world situations. The formulation and solution of such problems is supported by appropriate advanced mathematical concepts used for function approximation, differentiation and integration. Undertaking this unit will allow you to develop your problem solving skills, especially in the context of advanced mathematical techniques applied to ordinary differential equations used to model real world problems. You will also gain a deeper understanding of the concepts of the derivative and the integral, and how these may be used in applied contexts.
Antirequisites: MAN121 Assumed knowledge: Grade of at least Sound Achievement in Senior Mathematics C (or equivalent) or MAB120 or MAB100 or MAB125
Equivalents: MAB111, MAB126, MAB131, MAB182 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-1, 2011 SEM-2 and 2011 SUM

MAB122 ALGEBRA AND ANALYTIC GEOMETRY
Building upon the foundations established in MAB120 or Senior Maths C, this unit addresses the significant role of mathematical modelling using vectors, matrices and multivariable calculus for the description and resolution of simple and complex problems relevant in the real world. The formulation and solution of such problems is supported by appropriate advanced mathematical concepts used for function approximation, differentiation and integration. Undertaking this unit will allow you to develop your problem solving skills, especially in the context of advanced mathematical techniques applied to vectors, matrices and multivariable functions used to model real world problems.
Assumed knowledge: Grade of at least Sound Achievement in Senior Mathematics C (or equivalent) or MAB120 or MAB100 or MAB125
Equivalents: MAB112, MAB127, MAB132 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-1, 2011 SEM-2 and 2011 SUM

MAB210 STATISTICAL MODELLING 1
This unit is intended for all mathematics degree students, all double degree students with mathematics, secondary education students with mathematics as a teaching area, and quantitatively-oriented students in other courses, particularly in Science, Information Technology, Engineering and areas of Business. The unit will provide you with fundamental skills and operational knowledge for all further study in statistics, and highly relevant foundations for other areas of mathematics such as mathematical modelling and operations research. The unit will also help you develop fundamental problem-solving skills in statistics and mathematics.
Assumed knowledge: Grade of at least Sound Achievement in Senior Mathematics C (or equivalent) or MAB120 is assumed knowledge.
Prerequisites: MAB121 or MAB122
Antirequisites: MAN210
Equivalents: MAB281 MATHEMATICS FOR COMPUTER GRAPHICS
Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-1 and 2011 SEM-2

MAB220 COMPUTATIONAL MATHEMATICS 1
Many real world problems are not solvable analytically, meaning that it is necessary to develop computational methods that can be used to solve these problems. Additionally, to be able to apply these methods to large problems, they must be implemented as algorithms in a computer language such as MATLAB. This unit addresses both the theoretical development of computational methods and their implementation in MATLAB. The aim of this unit is to provide you with the introductory concepts, computational techniques and programming skills that will allow you to solve many real world problems. It is also designed to prepare you for study in the advanced units in computational mathematics.
Antirequisites: MAN220 Assumed knowledge: Grade of at least Sound Achievement in Senior Mathematics C (or equivalent) or MAB120 is assumed knowledge.
Prerequisites: MAB121 or MAB122
Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-1 and 2011 SEM-2

MAB281 MATHEMATICS FOR COMPUTER GRAPHICS
Computer graphics is a rapidly growing field of the computer science industry. It has applications in computer games, virtual reality, CAD systems and geometric modelling. Fundamental to all of these applications is mathematics. Thus, to be a working professional in this area you will need a working knowledge of the basic mathematics and concepts that are central to this field. This unit is also ideal for non-specialists as it demonstrates some of the various fields of applications of mathematics in everyday life. The aim of this unit is to introduce you to the mathematics of computer graphics and relate this to the solutions of problems that arise in the many applications of computer graphics.
Assumed knowledge: Grade of at least Sound
Achievement in Senior Mathematics B (or equivalent) or MAB105 is assumed knowledge.
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-2

MAB311 ADVANCED CALCULUS
This unit includes the following: polar coordinates; parametric equations; conic sections; quadric surfaces; vector-valued functions; Fourier series; functions of several variables; graphs; partial derivatives; total derivatives; extrema; Lagrange multipliers; Taylor series for multivariable functions; double and triple integrals; Green's theorems; line and surface integrals; divergence theorem; Stoke's theorem; applications.
Prerequisites: (MAB111 or MAB121) and (MAB112 or MAB122)
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1

MAB312 LINEAR ALGEBRA
This unit covers the following broad topics from linear algebra: matrix analysis; eigenvalues and eigenvectors; vector spaces; inner product spaces.
Prerequisites: (MAB111 or MAB121) and (MAB112 or MAB122)
Antirequisites: MAN312
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1

MAB313 MATHEMATICS OF FINANCE
Finance provides one of the significant areas for the application of mathematics. Understanding the fundamental principles involved will enhance your general preparation for life and provide an essential tool for those of you who intend to pursue further studies or careers in the financial area. The aim of this unit is to provide you with an introduction to the methods used in obtaining relevant solutions to financial and business problems.
Prerequisites: MAB111 or MAB121 (which can be concurrently enrolled)
Antirequisites: MAN313
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-2

MAB314 STATISTICAL MODELLING 2
This unit includes: models for stochastic processes and statistical methods, which have applications in engineering, information technology, finance, and physical and life sciences. Markov chains; random walks; branching processes; queueing processes; long-term behaviour of processes; use of generating functions; bivariate and conditional distributions; transformations of random variables; beta and gamma distributions; mixture distributions; order statistics, minimum and maximum.
Prerequisites: MAB112 and MAB210
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1

MAB315 OPERATIONS RESEARCH 2
This unit introduces the essential features of operations research methods. It develops a number of basic mathematical techniques to solve generic problems and the theoretical foundations of these techniques. Students should develop the ability to apply various operations research methods, algorithms and techniques in the solution of practical problems. Students will also look at the applications of operations research techniques to real-world problems.
Prerequisites: MAB210 and (MAB112 or MAB122)
Antirequisites: MAN315
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1

MAB413 DIFFERENTIAL EQUATIONS
Differential Equations are among the most important aspects of the theoretical developments of any branch of science. It is often the case that the formulation of mathematical models of real world problems leads to an equation in which a function and its derivatives play a major role. Such equations are examples of differential equations. This unit builds on studies of differential equations in first year and provides a framework for studying partial differential equations and other aspects of applied mathematics in later semesters.
Prerequisites: MAB311 or MAB312
Antirequisites: MAN413
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-2

MAB414 APPLIED STATISTICS 2
This unit includes: Simple linear regression (revision), multiple linear regression, making inferences from regressions, choosing a model, checking model assumptions, general linear models - analysis of covariance, ANOVA revisited, designing experiments, issues in designing experiments, analysing experimental results, further experimental designs, assumptions, and how to cope if they aren’t met, simulations.
Prerequisites: MAB101
Assumed knowledge: MAB112
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-2

MAB420 COMPUTATIONAL MATHEMATICS 2
This unit provides you with the opportunity to employ a number of the skills that you have developed in the disciplines of computational mathematics and linear algebra, combining them in a coherent manner for resolving topical and relevant real world problems. You will become familiar with the methodologies for developing numerical algorithms that can be employed for either the direct solution or the iterative solution of large, sparse linear systems.
Prerequisites: MAB220 and MAB312 Antirequisites: MAN420 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-2

MAB422 MATHEMATICAL MODELLING
In this unit you will develop skills in the formulation and interpretation of mathematical models of 'real-world' problems drawn from the literature, the media and the lecturer's own research areas. You will also develop and extend your skills in the use of mathematical software to investigate solutions of some of these models. By emphasising the need to write clear mathematical arguments and to explain in logical and clear English the conclusions drawn from the mathematical models developed in the unit, you will also develop your written communication skills.
Prerequisites: MAB121 Antirequisites: MAN422
Assumed knowledge: MAB220 is recommended for prior/concurrent study for exposure to MATLAB Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-2

MAB461 DISCRETE MATHEMATICS
Discrete mathematics is playing an ever increasingly important role in society. We live in an electronic age where information security is of paramount importance, and it is discrete mathematics in the main that provides this security. In addition, many real world systems are discrete in nature and therefore lend themselves to a discrete analysis. These methods are therefore vital to the professional mathematician and useful to those with an interest in mathematics. This second level unit will provide you with an introduction to discrete and combinatorial mathematics, and give you a mathematical perspective that is different from the traditional coverage in other mathematics units. It will also provide you with valuable methods to apply in other areas of science and computer science.
Prerequisites: MAB112 or MAB122 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-2

MAB480 INTRODUCTION TO SCIENTIFIC COMPUTATION
This unit teaches students how to implement a mathematical algorithm in a modern scientific computing environment (eg Matlab). A case-study approach is used with an emphasis on writing efficient code. Also an overview of other software packages used in mathematics will be given.
Antirequisites: ITB849 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point

MAB521 APPLIED MATHEMATICS 3
This unit includes: partial differential equations such as the wave, heat and Laplace equations; special functions(gamma, delta, Bessel and error functions, Legendre polynomials); vector analysis and applications (vector algebra, vector calculus, fields, grad, div, curl, line and surface integrals, divergence theorem, Stoke's theorem, applications); functions of a complex variable (analytic functions, contour integrals, Laurent series, residues).
Prerequisites: MAB311 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-1

MAB522 COMPUTATIONAL MATHEMATICS 3
This unit includes: deriving the basic equations that describe fluid motion; the finite volume method for solving PDEs (application to the generalised diffusion equation, cell-centred and vertex-centred schemes, handling of boundary and initial conditions); solution of systems of nonlinear equations (Newton's method, Inexact Newton methods, Globally convergent methods).
Prerequisites: MAB311 and MAB420 Antirequisites: MAN522 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-1

MAB524 STATISTICAL INFERENCE
This unit includes: maximum likelihood estimation, confidence intervals and hypothesis tests, introduction to Bayesian inference, prior and posterior distributions, Bayesian inference for binomial data, Poisson count data distributions. Use of software Matlab and R.
Prerequisites: MAB14 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-1

MAB525 OPERATIONS RESEARCH 3A
This unit develops problem-solving skills and sharpens analytical skills. This unit introduces the technical issues involved in applying operations research principles, methods and algorithms in the solution of real-world problems.
Prerequisites: MAB315 Antirequisites: MAN525 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-1

MAB533 STATISTICAL TECHNIQUES
This unit builds on your knowledge and skills of statistical techniques and aims to provide you with an understanding and a working knowledge of some more specialised statistical techniques and their applications. Topics covered include quality management concepts and tools for statistical process control, modelling and analysis of reliability (for inanimate objects) and survival (for living entities), and multivariate techniques such as principal components analysis, discriminant analysis and cluster analysis.
MAB536 TIME SERIES ANALYSIS
Data in business, economics, engineering and the natural sciences often occur in the form of time series. Time Series Analysis provides models and methods for the analysis of such series of correlated observations. The ability to forecast optimally, to understand causal relationships between variables, and to analyse dynamic systems is of great practical importance. For example, optimal sales forecasts are needed for business planning, transfer function models are needed for improving the design and control of a process plant, and vector time series models are used to represent the relationships and interactions of macroeconomic variables in an economy. This unit is concerned with the building of time series models and the use of such models for practical applications such as optimal forecasting, simulation, causality analysis, and analysis of dynamic systems.

Prerequisites: MAB314 and MAB414
Antirequisites: MAN536, MAB526
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-2

MAB613 PARTIAL DIFFERENTIAL EQUATIONS
Partial differential equations are the classical foundation of mathematical models used to unambiguously describe processes exhibiting spatial and temporal variation. There exist numerous modern important examples of such so called continuum models and so it is essential that any practising mathematician be conversant with both the background, formulation and solution of such equations. This unit aims to develop your understanding of the construction, analysis, solution and interpretation of partial differential equation models of real-world processes.

Prerequisites: MAB311 and MAB413
Antirequisites: MAN613
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-2

MAB623 FINANCIAL MATHEMATICS
This unit includes the following: quantitative techniques in business, economics and finance; theory and structure of interest rates; general accumulation and discounting functions; force of interest; discounting including Modern Portfolio theory and extension; varying interest; general annuities; varying annuities; continuous varying annuities; mathematical analysis of financial transactions in money and capital markets; life annuities and life assurances; the life table; basic life table functions; life annuities and assurances; policy values; paid up policy values; changes to policies; use of life table; superannuation.

Prerequisites: MAB313 and MAB311
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-2

MAB624 APPLIED STATISTICS 3
Applied statistics provides methods for investigating relationships between variables that arise in data from a variety of areas including science, technology and commerce. The planning of the collection of the data, using ideas of experimental design, and the analysis of the resulting data, using methods based on statistical inference, are fundamental aspects of the statistical process. In addition, communication of results with clear reporting of the conclusions of the analysis is very important. These activities are an important part of decision making processes whatever the context of the application. This unit aims to build on the introductory experimental design and statistical analysis methods presented to you in Applied Statistics 2 in order to introduce modern statistical methods. Additionally, the use of statistical software to carry out analyses and the reporting of conclusions are emphasised.

Prerequisites: MAB414
Antirequisites: MAN624
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-2

MAB625 OPERATIONS RESEARCH 3B
Operations research techniques are used in most industries that are concerned with the application of scientific methods in decision making, especially the allocation of resources. There is thus a need for graduate students who can make decisions on the most appropriate technology to implement. This unit will build on the foundation of previous Operations Research units to develop knowledge and skills in using advanced techniques, tools and methods.

Prerequisites: MAB315
Equivalents: MAN625
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-2

MAB640 INDUSTRY PROJECT
In a holistic and systematic approach to problem solving, it is important that you learn to apply analytical methods and quantitative techniques encountered in a classroom environment to real world issues in industry. The aim of this unit is to allow you to utilise your knowledge of problem solving procedures and develop your communication and interactive skills by completing a specified project in industry under controlled supervision, providing a summary of your findings in a seminar and presenting a formally written detailed report.

Other requisites: Unit coordinator approval is required to enrol
Credit points: 24
Campus: Gardens Point
Teaching period: 2011 SEM-1 and 2011 SEM-2

MAB672 ADVANCED MATHEMATICAL MODELLING
Models are developed beginning with the description of 'real world' problems. Emphasis is on the mathematical modelling and not on the development of new mathematical techniques. The unit includes: mathematical modelling; model formulation; dimensional analysis and re-scaling; curves of pursuit; bungy jumping; modelling with systems of ordinary differential equations; phase plane methods for analysing systems of ODEs; bacterial growth in a chemostat; predator-prey models with harvesting; limit cycles; oscillations and excitable media; modelling with partial differential equations; motion of a continuum; continuity; traffic flow; aggregation of slime mould amoebae; momentum; ideal gas dynamics; quasi-linear PDEs.

Prerequisites: MAB422 Antirequisites: MAN672
Assumed knowledge: MAB311. Also recommend: MAB413 Credit points: 12 Contact hours: 4 per week
Campus: Gardens Point Teaching period: 2011 SEM-1