Bachelor of Engineering (Infomechatronics) (EN40)

Year offered: 2010
Admissions: Yes
CRICOS code: 056529D
Course duration (full-time): 4 years
Domestic fees (indicative): 2010: CSP $3,800 (indicative) per semester
International Fees (indicative): 2010: $12,000 (indicative) per semester
Domestic Entry: February and July
International Entry: February and July
QTAC code: 412502
Past rank cut-off: 79
Past OP cut-off: 11
OP Guarantee: Yes
Assumed knowledge: English (4, SA) and Maths B (4, SA)
Preparatory studies: For information on acquiring assumed knowledge visit http://www.studentservices.qut.edu.au/apply/ug/info/knowledge.jsp
Total credit points: 384
Standard credit points per full-time semester: 48
Course coordinator: Dr R.Mahalinga-Iyer
Discipline coordinator: Dr Gary Chadwick
Campus: Gardens Point

Why choose this course?
This leading edge degree will provide you with the combined skills of mechanical engineering, electrical and electronic engineering and information technology.

Career outcomes
Graduates from this degree may expect to find employment as consultants, project managers, designers, and maintenance and instrumentation engineers in a wide variety of work situations. The range of employment opportunities is diverse and extensive. The average starting salary for graduates is approx $40,000.

Practical teaching
In your final year you will undertake a project that will integrate and reinforce what you have learned through the application in a real world setting.

Facilities / technology
Our programs are responsive and relevant to the changing needs of the industry and the society we live in. Experiential and practical learning opportunities are provided through specially designed learning environments and tradition laboratory areas. Facilities that integrate virtual and web based material with physical equipment ensure that students get the opportunity to learn by doing that is an important part of engineering education.

Convenience
You will study at QUT’s Gardens Point campus in the centre of Brisbane, within easy walking distance to public transport, including buses, trains and ferries.

Please Note:
As from 2011, Infomechatronics will become Mechatronics.

Recommended Study
Chemistry, Maths C and Physics.

Career Outcomes
This leading edge degree provides graduates with the combined skills of mechanical engineering, electrical and electronic engineering and information technology to work in the high tech fields of automated systems and robotics for the design, development, construction and service of modern equipment and plant. Graduates from this degree may expect to find employment as consultants, project managers, designers, and maintenance and instrumentation engineers in a wide variety of work situations. The range of employment opportunities is diverse and extensive. Some typical examples of organisations may include: manufacturing plants of consumer products, computer peripherals manufacturers/maintenance companies, automobile manufacturing industries, large scale manufacturing/maintenance industries such as Boeing, instrumentation industries, communication companies, research organisations, food and food processing industries and software development companies.

Overview
This course bridges the three, traditionally separate, disciplines of Mechanical Engineering, Electrical and Electronic Engineering, and Computing and provides the combined skills required for the design, development, construction and service of modern systems and equipment. Advanced units emphasis the integration of knowledge and skills that impact on all aspects of the design, construction and service of modern computer controlled machines. In the final year a one-semester industry project will integrate and reinforce what has been learned through application in a real world setting.

Professional Recognition
Full professional accreditation from Engineers Australia has been given for this course.

Minors
For professional recognition you will undertake an Applications minor which consists of a Work Place Integrated Learning unit, a project unit and two specialised engineering units.

Special Course Requirements

Students must obtain at least 60 days of industrial work experience in an engineering environment as part of the Work Integrated Learning unit.

International Student Entry

International students must maintain an enrolment program that will allow them to complete their course within the specified timeframe of their eCoE (electronic Confirmation of Enrolment).

Further Information

School of Engineering Systems - Phone +61 7 3138 1993, Fax +61 7 3138 1516, email: bee.enquiries@qut.com

Deferment

All domestic applicants offered admission to undergraduate award courses may apply to defer commencement of their study. A deferment application will not normally be considered for courses where specific admission requirements apply, for example submission of folios or undertaking auditions. Applicants are not entitled to hold a deferred place and hold a place in another QUT course for the same period.

Find out more on deferment.

Full-time Course structure – Students commencing February 2010 onwards (Years 2 – 4)

<table>
<thead>
<tr>
<th>Year 2 - Semester 1 (to be introduced in 2011)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENB211</td>
</tr>
<tr>
<td>ENB212</td>
</tr>
<tr>
<td>ENB231</td>
</tr>
<tr>
<td>MAB127</td>
</tr>
<tr>
<td>MAB233</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 2 - Semester 2 (to be introduced in 2011)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENB215</td>
</tr>
<tr>
<td>ENB221</td>
</tr>
</tbody>
</table>

Year 3 - Semester 1 (to be introduced in 2012)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENB331</td>
<td>Materials and Manufacturing 2</td>
</tr>
<tr>
<td>INB104</td>
<td>Building IT Systems</td>
</tr>
</tbody>
</table>

Year 3 - Semester 2 (to be introduced in 2012)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENB222</td>
<td>Thermodynamics 1</td>
</tr>
<tr>
<td>ENB240</td>
<td>Introduction To Electronics</td>
</tr>
<tr>
<td>ENB250</td>
<td>Electrical Circuits</td>
</tr>
<tr>
<td>ENB334</td>
<td>Design For Manufacturing</td>
</tr>
</tbody>
</table>

Year 4 - Semester 1 (to be introduced in 2013)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENB301</td>
<td>Instrumentation and Control</td>
</tr>
<tr>
<td>INB370</td>
<td>Software Development</td>
</tr>
<tr>
<td>INB860</td>
<td>Computational Intelligence for Control and Embedded Systems</td>
</tr>
<tr>
<td>MAB233</td>
<td>Engineering Mathematics 3 OR Selective</td>
</tr>
</tbody>
</table>

Year 4 - Semester 2 (to be introduced in 2013)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEB701</td>
<td>Work Integrated Learning 1</td>
</tr>
<tr>
<td>BEB801</td>
<td>Project 1</td>
</tr>
<tr>
<td>BEB802</td>
<td>Project 2</td>
</tr>
<tr>
<td>ENB333</td>
<td>Operations Management</td>
</tr>
</tbody>
</table>

Infomechatronics Selectives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENB245</td>
<td>Introduction To Design and Professional Practice</td>
</tr>
<tr>
<td>ENB457</td>
<td>Controls, Systems and Applications OR any INB unit with permission from Coordinator</td>
</tr>
</tbody>
</table>

Full-time Course structure – Students commencing Mid-Year 2010 onwards (Years 2 – 5)

<table>
<thead>
<tr>
<th>Year 2 - Semester 1 (to be introduced in 2011)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENB211</td>
</tr>
<tr>
<td>ENB212</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 2 - Semester 2 (to be introduced in 2011)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENB215</td>
</tr>
<tr>
<td>ENB221</td>
</tr>
</tbody>
</table>
ENB231 Materials and Manufacturing 1
MAB127 Mathematics for Engineering 2
OR
MAB233 Engineering Mathematics 3

Year 2 - Semester 2 (to be introduced in 2011)
ENB150 Introducing Engineering Design
ENB200 Introducing Sustainability
ENB331 Materials and Manufacturing 2
INB104 Building IT Systems

Year 2 - Semester 2 (to be introduced in 2011)
OR

Potential Careers:
Engineer, Manufacturer, Mechanical Engineer.

UNIT SYNOPSIS

BEB701 WORK INTEGRATED LEARNING 1
This unit aims to provide you with the opportunity to learn in a workplace environment. It will involve attendance, participation, observation, critical reflection, and report writing on workplace activities. The emphasis of your critical reflection and report writing will be on identifying and describing aspects of professional relevance incorporating: collaboration and teamwork; work place, health and safety; professional conduct; ethical responsibility, and other aspects of your workplace experience.
This unit may form part of your (compulsory) course core (as required by professional accrediting bodies e.g. Engineers Australia, Australian Institute of Building, Royal Institution of Chartered Surveyors), or it may be one of several work integrated learning (WIL) units (selected as part of a Minor).
Prerequisites: 192cp of completed studies Credit points: 12 Campus: Gardens Point Teaching period: 2010 SEM-1, 2010 SEM-2 and 2010 SUM

BEB801 PROJECT 1
This unit is usually taken in the final year of study. Students complete an individual project involving the application of skills and knowledge attained during the earlier years of their degree program. For some students, this unit will be taken one of two 'project' units related to the same student project; in such cases this unit may be a pre-requisite or co-requisite to the second unit (or a follow-on from the first unit). The final 'deliverable' for this unit may vary for each discipline and details will be provided in lectures/tutorials and on the Blackboard website.
Equivalents: CEB411, CEB420, CNB434, EEB781-1, EEB889-1 Credit points: 12 Contact hours: 2 per week Campus: Gardens Point Teaching period: 2010 SEM-1 and 2010 SEM-2

BEB802 PROJECT 2
This unit is usually taken in the final year of study, and is only taken by students completing a two unit project. Students complete an individual project involving the application of skills and knowledge attained during the earlier years of their degree program. This unit will be taken as the second of two 'project' units related to the same student project.
Equivalents: CEB415, EEB782-2, EEB889-2 Credit
ENB150 INTRODUCING ENGINEERING DESIGN
Assumed knowledge: ENB110 is assumed knowledge.
Credit points: 12
Contact hours: 2 per week
Campus: Gardens Point
Teaching period: 2010 SEM-1 and 2010 SEM-2

ENB211 DYNAMICS
Fundamental equations of particle kinetics; energy, power, impulse and momentum; kinematics of rigid bodies in plane motion, relative motion and motion relative to rotating axes; kinematics of rigid bodies, Basic machine components, (Gears, clutches, brakes etc.), Single degree of freedom system.
Prerequisites: (MAB126 or MAB180 or MAB131) and (ENB130 or PCB136 or PCB150)
Assumed knowledge: ENB110 or ENB101 are assumed knowledge.
Equivalents: MMB112
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2010 SEM-1

ENB212 STRENGTH OF MATERIALS
This unit introduces the analysis of stress and strain in simple engineering components and systems such as uniaxial and bending stresses, deflection of beams, torsion, thin walled structures, combined loading, yield criteria, and introduces the finite element method (FEA).
Prerequisites: ENB110 or ENB101 and ENB104
Credit points: 12
Contact hours: 5 per week
Campus: Gardens Point

ENB215 FUNDAMENTALS OF MECHANICAL DESIGN
Basic procedures of design, design for sustainability, universal design, Concept development, creative problem solving, Basic component design, computational scheme in design, manufacture & materials.
Assumed knowledge: MAB126 or MAB180 or MAB131, and ENB101 or ENB110, and ENB104 or ENB110 are assumed knowledge.
Equivalents: MMB281
Credit points: 12
Contact hours: 5 per week
Campus: Gardens Point
Teaching period: 2010 SEM-2

ENB221 FLUID MECHANICS
This unit introduces the basic concepts of fluid mechanics and applies them to some simple engineering problems.
Assumed knowledge: MAB126 or MAB180 or MAB131, and ENB101 or ENB110 are assumed knowledge.
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point

ENB222 THERMODYNAMICS 1
Thermodynamic behaviour of substances; theory and application of the 1st and 2nd laws of thermodynamics; thermodynamic cycles, including gas cycles, vapour power cycles and refrigeration cycles; gas-vapour mixtures and the principles of air-conditioning; fuels and combustion.
Assumed knowledge: MAB127 or MAB182 or MAB132, and ENB130 or PCB136 are assumed knowledge.
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2010 SEM-2

ENB231 MATERIALS AND MANUFACTURING 1
Materials and their engineering applications. Manufacturing systems and technology, material properties and manufacturing, material selection, failure, graphical communication.
Assumed knowledge: ENB104 or ENB110 is assumed knowledge.
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2010 SEM-1

ENB240 INTRODUCTION TO ELECTRONICS
Module Electronics A provides a basic understanding of the characteristics and operation of discrete semiconductor components. Electronic circuit design is introduced with emphasis on the small signal low and high frequency response of those circuits. Module Digital Electronics gives students a good grounding in the basic principles of digital design, with particular regard to the fundamentals of digital number systems, Boolean algebra, combinational and sequential logic design.
Prerequisites: ENB103 or ENB120
Equivalents: EEB312
Credit points: 12
Contact hours: 5 per week
Campus: Gardens Point
Teaching period: 2010 SEM-1

ENB243 LINEAR CIRCUITS AND SYSTEMS
Network analysis; Laplace transform of signals and transfer functions of systems, time and frequency responses of linear circuits, feedback configurations and transfer functions, analyse and designing analogue systems using transistors and operational amplifiers, designing and synthesising analogue filters, signal conditioning.
Prerequisites: ENB120 and MAB126
Assumed knowledge: ENB240 is assumed knowledge.
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2010 SEM-2
ENB244 MICROPROCESSORS AND DIGITAL SYSTEMS
This unit covers the basis for electronic circuit design in general but also in connection with microprocessor systems, theory and design of advanced embedded digital systems and practical implementation. The practical application of these circuits including interfacing and environment factors will be considered.
Prerequisites: ENB240 Assumed knowledge: ENB246 or INB104 is assumed knowledge. Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2010 SEM-2

ENB245 INTRODUCTION TO DESIGN AND PROFESSIONAL PRACTICE
Introduction to general principles of electronic circuit and electrical equipment design and realisation; design and implementation of basic electronic circuits; experience in undertaking engineering projects, in report writing, and working in teams. The unit gives students the opportunity to apply their theoretical knowledge to real-life engineering problems.
Assumed knowledge: ENB240 and ENB246 or INB104 is assumed knowledge. Equivalents: EEB584 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2010 SEM-2

ENB250 ELECTRICAL CIRCUITS
This unit introduces you to electrical circuit analysis. It shows how to determine the transient and steady state solution in single and three phase circuits as well as the interaction of fluxes and currents in transformers and electrical machines.
Prerequisites: ENB120 Antirequisites: ENB103 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point

ENB301 INSTRUMENTATION AND CONTROL
The unit introduces the student to classical control systems, analysis and synthesis, and implementation in an industrial control context. It introduces the principles of electrical measurements and instrumentation, sensors, PLC, DSC and industrial networks, and foundation of feedback control theory for engineers.
Prerequisites: MAB126 or MAB182 or MAB132 Assumed knowledge: ENB105 or ENB205 or ENB243 are assumed knowledge. Credit points: 12 Contact hours: 5 per week Campus: Gardens Point Teaching period: 2010 SEM-1

ENB331 MATERIALS AND MANUFACTURING 2
ENB331 is a third year unit which extends the formative body of knowledge gained in ENB231 and introduces the shear deformation mechanisms of engineering material and how these properties can be used to understand the mechanics of metal cutting. Descriptive and analytical information about different material removal processes is provided to the student through lectures, tutorials and case studies. The unit also provides the student with an excellent opportunity to apply the knowledge in the design and manufacture of a component.
Prerequisites: ENB231 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2010 SEM-1

ENB333 OPERATIONS MANAGEMENT
This unit develops students' ability in applying quantitative techniques in solving different types of industrial operations problems. Topics include: product mix, assignment and transportation models; location and layout decisions, job design analysis; project planning; quality control and the use of simulation in operations management.
Equivalents: MMB476 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2010 SEM-1

ENB334 DESIGN FOR MANUFACTURING
Topics covered in this unit include: basic concepts in the analysis of a mechanical engineering design, relating the design requirements to a range of manufacturing processes; an understanding of the complete manufacturing specifications for mechanical designs based on functional requirements, manufacturing processes, interchangeability and standardisation; introduction to the basic principles in the design of jigs and fixtures in manufacturing.
Assumed knowledge: ENB231 is assumed knowledge.
Equivalents: MMB374 Credit points: 12 Contact hours: 5 per week Campus: Gardens Point Teaching period: 2010 SEM-2

ENB436 MECHATRONICS SYSTEM DESIGN
This unit provides students with an understanding of design and interpretation of hydraulic and pneumatic circuits (including graphical symbols, fluid logic and components of fluid systems) and a basic understanding of PLC programming for control of manufacturing systems with the emphasis on hands on practice of developing a control system for a given process. Topics include the following: mechatronics systems design; power supply; introduction to fluid power and graphical symbols; hydraulic and pneumatic systems; simple circuits; fluid logic; logic symbols and circuits; hydraulic components, fluids, system design, circuits; pressure compensated flow control.
Prerequisites: ENB334 Equivalents: MMB478 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2010 SEM-1

ENB457 CONTROLS, SYSTEMS AND APPLICATIONS
Control systems are playing an increasingly important role in process control, energy management and utility
management. This unit is concerned with the application of advanced control systems with an emphasis on physical architectures and implementations. Topics covered include control system actuators, sensors and controllers, control system architectures, human machine interfacing, adaptive control strategies and intelligent control.

Prerequisites: ENB301 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2010 SEM-2

INB104 BUILDING IT SYSTEMS
This team-based unit is an integrated introduction to information technology designed to engage, inspire and inform and will demonstrate the important role that technical system design and development plays in achieving robust operation of a large variety of technological solutions. This unit will give you substantial hands-on, practical learning experiences and will motivate you through engagement in the creative, explorative and meaningful development of technological artefacts that operate in real world contexts.

Antirequisites: ITB001 Credit points: 12 Contact hours: 3 per week Campus: Gardens Point Teaching period: 2010 SEM-1 and 2010 SEM-2

INB270 PROGRAMMING
This unit aims to give you a positive introduction to the skills required in solving computational problems and implementing solutions in a programming or scripting language. Although some theoretical aspects of computer programming are introduced briefly, the overall emphasis of the unit is programming practice. The unit emphasises generic programming concepts and related problem-solving strategies. The skills you learn in this unit will be applicable to a wide variety of commonly-used, industrially-significant programming and scripting languages.

Prerequisites: INB104 or ENB246 Antirequisites: ITB003, ITB112, ITB411, INN270 Credit points: 12 Contact hours: 3 per week Campus: Gardens Point Teaching period: 2010 SEM-2

INB370 SOFTWARE DEVELOPMENT
Understanding software development is an integral part of the IT industry for software engineers. Software development relies on object technologies, programming techniques and numerous code libraries provided by language developers and third party vendors. Integrated Development Environments, unit testing frameworks, automated and continuous build tools and versioning systems are all becoming part of the tool set modern software developers must be familiar with. This unit is designed to introduce these technologies and techniques to show how software can be rapidly developed.

Prerequisites: INB270 or ITB003 or INN270 Credit points: 12 Contact hours: 3 per week Campus: Gardens Point Teaching period: 2010 SEM-1

INB860 COMPUTATIONAL INTELLIGENCE FOR CONTROL AND EMBEDDED SYSTEMS
This is a specialisation unit in the area of Infomechatronics that introduces five methods from the field of computational intelligence and relates them to applications on real time control and embedded systems. The methods are: Knowledge Base Systems, Fuzzy Control, Neural Networks, Reinforcement Learning and Evolutionary Computation. The unit is also intended to teach the specific design and programming skills that will enable you to solve problems using computational intelligence methods in real-time embedded systems. It is assumed that you already have knowledge of programming.

Antirequisites: ITB847 Credit points: 12 Contact hours: 3 per week Campus: Gardens Point Teaching period: 2010 SEM-1

MAB127 MATHEMATICS FOR ENGINEERING 2
This unit extends the areas of function, calculus, matrices and vectors introduced in MAB125 by introducing functions of more than one variable, partial derivatives and multiple integrals, vector valued functions, and matrix methods for the solution of systems of ordinary differential equations. Each of these topics is realised by contextualised engineering related problems.

Assumed knowledge: Grade of at least Sound Achievement in Senior Mathematics C (or equivalent) or MAB125 or MAB120 or MAB131 or MAB182 is assumed knowledge Equivalents: MAB112, MAB122, MAB132 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2010 SEM-1, 2010 SEM-2 and 2010 SUM

MAB233 ENGINEERING MATHEMATICS 3
This unit is mostly introductory statistics for engineering but also includes a small component on foundations of computational mathematics. Statistics includes: the planning, execution, analysis and reporting of data investigations; use of a statistical package; modelling data; relationships between variables; estimation; confidence intervals; tolerance limits; hypothesis testing; fitting and investigating relationships; regression; design and analysis of experiments; risk; random variables; special distributions; linear combinations of correlated variables; reliability. The introduction to computational mathematics includes: function approximation; polynomial interpolation; numerical solution of ordinary differential equations.

Prerequisites: MAB131 or MAB182 or MAB121 or MAB126 or MAB127 Antirequisites: BSB123 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point
Teaching period: 2010 SEM-1