Bachelor of Engineering (Civil and Environmental) (EN40)

Year offered: 2011
Admissions: Yes
CRICOS code: 056529D
Course duration (full-time): 4 years
Domestic Fees (indicative): 2011: CSP $3,878 (indicative) per semester
International Fees (indicative): 2011: $12,125 (indicative) per semester
Domestic Entry: February and July
International Entry: February and July
QTAC code: 412502
Past rank cut-off: 81
Past OP cut-off: 10
OP Guarantee: Yes
Assumed knowledge: English (4, SA) and Maths B (4, SA)
Preparatory studies: For information on acquiring assumed knowledge visit http://www.qut.edu.au/assumed-knowledge
Total credit points: 384
Standard credit points per full-time semester: 48
Course coordinator: Dr R. Mahalinga-Iyer
Discipline coordinator: Fraser McGregor
Campus: Gardens Point

Why choose this course?
The Faculty of Built Environment and Engineering at QUT is dedicated to quality teaching and learning. The Faculty's interactions with industry and high academic standard make it a unique place to study.

Career outcomes
Graduates have excellent employment opportunities with industry, government bodies and consulting engineering companies. As legislation becomes more stringent and the communities expectations increase there will be a need for institutions to employ more environmental engineers.

Practical teaching
QUT gives you real engineering experience you will undertake project based units and the industrial experience component will make you work ready and give you the employment edge.

Industry links
You will be exposed to ideas and experience of guest lecturers from the real world, industry professionals. Graduates include many industry leaders in Australia. Our academic staff are industry experienced and also members of international networks and collaborative research projects.

Course structure
You will learn about technical civil and environmental engineering and science, as well as environmental management skills in urban infrastructure and mining development. You will also learn about economic topics related to sustainable development.

Facilities / technology
You will use specialist computer software to solve difficult problems such as structural frame analysis, ground water flow and transport networks. Our programs are responsive and relevant to the changing needs of the industry and the society we live in. Experiential and practical learning opportunities are provided through specially designed learning environments and tradition laboratory areas. Facilities that integrate virtual and web based material with physical equipment ensure that you will get the opportunity to learn by doing which is an important part of engineering education.

Convenience
You will study at QUT's Gardens Point campus in the centre of Brisbane, within easy walking distance to public transport, including buses, trains and ferries.

Who should do this course?
If you are interested in any of the following, you may enjoy a career in Civil and Environmental Engineering:

- Technical and engineering activities.
- Solving problems
- the environment
- Design and using you creativity.

Recommended Study
Chemistry, Maths C and Physics.

Minors (for students commencing 2010 onwards)
For professional recognition you will undertake an Applications minor which consists of a Work Place Integrated Learning unit, a project unit and two specialised engineering units.

Minors (for students commencing prior to 2010)
You will have the opportunity to undertaken two minors. For professional recognition you will undertake an Applications minor which consists of a Work Place Integrated Learning unit, a project unit and two specialised civil engineering units. The second minor must be taken from an approved list outside your discipline.
Please refer to the rules at the following location before making your selection: http://www.bee.qut.edu.au/study/current/2majormin/.

Professional Recognition
Full professional accreditation from Engineers Australia has been given for this course.

Further Information
School of Urban Development - Phone +61 7 3138 2678, Fax +61 7 3138 1515, email: bee.enquiries@qut.com

Special Course Requirements
A candidate for the degree of Bachelor of Engineering (Civil and Environmental) must obtain at least 60 days of industrial experience/practice in an engineering environment as part of the Work Integrated Learning unit.

International Student Entry
International students must maintain an enrolment program that will allow them to complete their course within the specified timeframe of their eCoE (electronic Confirmation of Enrolment).

Deferment
Domestic students can defer their offer in this course for one year. In exceptional circumstances up to 12 months of additional deferment may be granted.

Find out more on deferment.

Limits on grades of 3
A new policy concerning grades of 3 came into effect from 1 January 2009 (QUT MOPP C/5.2). With effect from this date grades of 3 are no longer considered a conceded or low pass but are classified as a fail grade. Any grades of 3 awarded prior to 1 January 2009 retain the conceded pass status and will be counted for graduation purposes up to the maximum number of grades of 3 permitted for your course. Grades of 3 incurred in units that commence after 1 January 2009 will not count towards your degree. Further information is available on the Student Services website.

Full-time Course structure – Students commencing February 2010 onwards (Years 2 – 4)

Please Note:
For 1st year enrolment program please refer to EN40 Bachelor of Engineering course entry.

Year 2 - Semester 1 (to be introduced in 2011)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENB270</td>
<td>Engineering Mechanics of Materials</td>
</tr>
<tr>
<td>ENB272</td>
<td>Geotechnical Engineering 1</td>
</tr>
<tr>
<td>ENB273</td>
<td>Civil Materials</td>
</tr>
<tr>
<td>MAB233</td>
<td>Engineering Mathematics 3</td>
</tr>
</tbody>
</table>

Year 2 - Semester 2 (to be introduced in 2011)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENB274</td>
<td>Design of Environmentally Sustainable Systems</td>
</tr>
<tr>
<td>ENB275</td>
<td>Project Engineering 1</td>
</tr>
<tr>
<td>ENB276</td>
<td>Structural Engineering 1</td>
</tr>
<tr>
<td>ENB280</td>
<td>Hydraulic Engineering</td>
</tr>
</tbody>
</table>

Year 3 - Semester 1 (to be introduced in 2012)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENB372</td>
<td>Design and Planning of Highways</td>
</tr>
<tr>
<td>ENB378</td>
<td>Water Engineering</td>
</tr>
<tr>
<td>ENB383</td>
<td>Environmental Resource Management</td>
</tr>
<tr>
<td>NQB302</td>
<td>Earth Surface Systems</td>
</tr>
<tr>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>NQB314</td>
<td>Sedimentary Geology</td>
</tr>
</tbody>
</table>

Year 3 - Semester 2 (to be introduced in 2012)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENB371</td>
<td>Geotechnical Engineering 2</td>
</tr>
<tr>
<td>ENB376</td>
<td>Transport Engineering</td>
</tr>
<tr>
<td>ENB380</td>
<td>Environmental Law and Assessment Selective</td>
</tr>
</tbody>
</table>

Year 4 - Semester 1 (to be introduced in 2013)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEB801</td>
<td>Project 1</td>
</tr>
<tr>
<td>PQB360</td>
<td>Global Energy Balance and Climate Change</td>
</tr>
<tr>
<td>UDB266</td>
<td>Planning Processes and Consultations Selective</td>
</tr>
</tbody>
</table>

Year 4 - Semester 2 (to be introduced in 2013)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEB701</td>
<td>Work Integrated Learning 1</td>
</tr>
<tr>
<td>ENB377</td>
<td>Water and Waste Water Treatment Engineering</td>
</tr>
<tr>
<td>NQB403</td>
<td>Soils and the Environment</td>
</tr>
<tr>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>NQB614</td>
<td>Groundwater Systems</td>
</tr>
<tr>
<td>NQB601</td>
<td>Sustainable Environmental Management</td>
</tr>
</tbody>
</table>

Civil and Environmental Engineering Selectives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENB375</td>
<td>Structural Engineering 2</td>
</tr>
<tr>
<td>ENB471</td>
<td>Design of Concrete Structures and Foundations</td>
</tr>
</tbody>
</table>
ENB270 ENGINEERING MECHANICS OF MATERIALS
This unit introduces the stress produced in various members of a structural system due to the forces applied to them, and how to determine the design specifications (size and shape) of the members to withstand the forces to prevent the structural system failing.
Prerequisites: ENB101 or ENB110 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-1

ENB272 GEOTECHNICAL ENGINEERING 1
Soil mechanics is a part of geotechnical engineering, soil types, their description, classification and engineering properties. The unit includes the following: granular and cohesive soil classification systems; volume and mass components; density and air voids; determination of soil geostatic vertical pressures; pore water pressures and effective stress; permeability theory and fluid seepage in soil, with erosion and piping analysis; soil shear strength assessment and application to retaining wall lateral pressures; retaining wall design; slope stability analysis and stabilisation. Computer simulation and analysis programs are used where appropriate.
Assumed knowledge: ENB102 or ENB270 are assumed knowledge Equivalents: CEB209, CEB232 Credit points: 12 Contact hours: 6 per week Campus: Gardens Point Teaching period: 2011 SEM-1

ENB273 CIVIL MATERIALS
The unit provides students with a sound and practical approach to material properties and selection so that they may adapt to scientific and technological changes in the variety of products entering the market. They understand where the engineer fits in a quality assurance program and become aware of the numerous components of quality assurance and the costs generated by quality control and assurance. Students become aware of the effect of the working environment on different engineering materials. Among other things, they study the behaviour of concrete from the time it is manufactured to the end of its life, and develop knowledge of the parameters involved in manufacturing good concrete, and the consequences of delivering poor concrete.
Prerequisites: ENB270 or ENB102. ENB270 can be studied concurrently. Credit points: 12 Contact hours: 5 per week Campus: Gardens Point Teaching period: 2011 SEM-1
ENB274 DESIGN OF ENVIRONMENTALLY SUSTAINABLE SYSTEMS
This unit extends and applies the knowledge developed in BEB200 Introducing Sustainability to important issues such as site investigation, development of site planning criteria, site planning, environmental management and quality, pollution prevention and control, and resources and waste management. BEB200 and ENB274 form the foundations of the civil and environmental degree. This unit builds upon generic competencies acquired in BEB100 Introducing Professional Learning and ENB271 Design of Structural Timber and Earthworks. It also provides transport planning fundamentals, which will be built upon in ENB372 Design and Planning of Highways and ENB379 Transport Engineering and Planning Applications.
Prerequisites: BEB200 or ENB200 or ENB100 or UDB100 or SCB110 Assumed knowledge: ENB271 is assumed knowledge. Equivalents: CEB214 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-2

ENB275 PROJECT ENGINEERING 1
The unit commences with the development of the construction techniques common to site investigation, earthworks, pile driving, deep foundations, reinforced and prestressed concrete and steel erection. This operational understanding is extended into a study of the practices used to estimate cost and to administer contracts, including planning and the legal implications of operating in a commercial environment. The unit concludes with the issues surrounding the uncertainty of weather and of operating in remote environments.
Assumed knowledge: ENB271 and ENB273 are assumed knowledge. Equivalents: CEB216 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-2

ENB276 STRUCTURAL ENGINEERING 1
This unit includes the following: development of the method of moment distribution and its application in analysis of continuous beams and frames; theory of influence lines and its application to determine the effects of moving loads on beams and trusses; 'pattern loading' on frames and continuous beams; behaviour of reinforced concrete members; applications in the design of beams and columns.
Prerequisites: ENB102 or ENB270 Assumed knowledge: ENB273 and ENB271 is assumed knowledge. Equivalents: CEB215 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-2

ENB280 HYDRAULIC ENGINEERING
This unit primarily provide a basic understanding of hydraulic (fluid) principles and an understanding of the use of these principles in engineering applications. The main topics to be covered are: Units and properties of fluids, Forces in static fluids, Buoyancy, Kinematics and continuity, The energy equation and the momentum equation; Similitude and dimensional analysis, Lift and drag, Frictional flow in pipes, Application of pipe resistance formulae, Fitting.
Assumed knowledge: MAB126 or MAB180 or MAB131, and ENB101 or ENB110 are assumed knowledge. Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-2

ENB371 GEOTECHNICAL ENGINEERING 2
This unit includes: further study on the behaviour of soil and rocks; determination of subsurface pressures from surface loadings; soil settlement including time related clay consolidation settlement and immediate settlements on sand and clay as related to shallow foundations; assessment of bearing capacity and allowable bearing pressures under shallow foundations; pile foundation systems and analysis for capacity and settlement; rock mass behaviour, classification and joint shear strength applied to slope stability assessment and stabilisation measures.
Prerequisites: ENB272 Equivalents: CEB322 Credit points: 12 Contact hours: 5 per week Campus: Gardens Point Teaching period: 2011 SEM-2

ENB372 DESIGN AND PLANNING OF HIGHWAYS
Civil engineers as professionals are responsible for the delivery of major transport infrastructure items through the stages of inception, planning, design, development, maintenance and management. The purpose of such projects is to improve the quality of life of the community by offering safe and efficient access to activity locations and mobility between locations. In delivering such infrastructure it is imperative that social, economic, and environmental impacts and benefits are considered and addressed. This unit offers students an opportunity to explore the role of the civil engineer in the preparation of a feasibility design study for a road as a major transport infrastructure item.
Assumed knowledge: ENB271 and ENB274 are assumed knowledge. Equivalents: CEB317 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-1

ENB375 STRUCTURAL ENGINEERING 2
This unit considers the following: limit states design of steel structures; buckling and ultimate strength behaviour of steel structures; tension members, compression members; local and global buckling (flexural and flexural torsional buckling modes) concepts as applied to compression members and beams; effective lengths of compression members and beams; design of beams; effect of lateral restraints on buckling; web stresses including web crippling and buckling;
beam-columns; bolted and welded connections; unsymmetric bending of beams including principal second moments of area; shear stresses in beams of thin-walled open cross-sections and their shears centres. Most cold-formed steel sections are unsymmetric and hence the latter topics are useful in steel design.

Prerequisites: ENB102 or ENB270 or ENB276
Assumed knowledge: ENB273 is assumed knowledge.
Equivalents: CEB318
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1

ENB376 TRANSPORT ENGINEERING

The transport system is an essential part of our physical infrastructure. It is imperative that civil engineers are able to undertake typical road and traffic engineering investigations, analyses and designs. These require an understanding of the intent of individual road system elements, how they operate, and how they are delivered and managed: this understanding is developed in this unit. Further, it is important that civil engineers are able to undertake multimodal transport surveys to gain an understanding of the operation of a particular transport system.

Assumed knowledge: ENB274 and ENB372 are assumed knowledge.
Equivalents: CEB323
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-2

ENB377 WATER AND WASTE WATER TREATMENT ENGINEERING

The provision of a safe, wholesome and adequate supply of water and the proper treatment, disposal, and reuse of wastewater are essential for protecting human health and well-being. Water and wastewater treatment are required for the control of water-born diseases and the provision of proper sanitation for urban, rural, and recreational areas. Water and wastewater treatment engineering is a major field of civil and environmental engineering and is manifested by sound principles and practice in terms of solving sanitation problems.

Prerequisites: ENB201 or ENB280
Assumed knowledge: ENB274 is assumed knowledge.
Equivalents: CEB321
Credit points: 12
Contact hours: 3 per week
Campus: Gardens Point
Teaching period: 2011 SEM-2

ENB378 WATER ENGINEERING

The main topics to be covered in this unit follow: the hydrologic cycle and its application to the estimation of runoff from small catchments; probability and risk and the selection of design floods; hydrologic data; estimation of peak runoff using the Rational Formula estimation of runoff hydrographs using rainfall-runoff routing models; the hydraulic characteristics of open channels; uniform flow, gradually varied flow and rapidly varied flow; the hydraulic characteristics of culverts and retention basins; the operation of urban drainage systems.

Prerequisites: ENB201 or ENB280
Equivalents: CEB319
Credit points: 12
Campus: Gardens Point
Teaching period: 2011 SEM-1

ENB380 ENVIRONMENTAL LAW AND ASSESSMENT

The adverse consequences of human activity have resulted in the adoption of various international treaties, enactment of stringent legislative requirements, and a growing demand for improved management practices. Engineers need to be aware of the way in which the law works, to be able to communicate with lawyers, and to recognise the legal and political implications of their projects. An understanding of the local, state, and federal governments' power to regulate development and the legal and planning requirements and assessment procedures is essential for professional engineering practice.

Prerequisites: ENB383
Assumed knowledge: BEB200 or ENB200 are assumed knowledge.
Equivalents: CEB416
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-2

ENB383 ENVIRONMENTAL RESOURCE MANAGEMENT

This unit addresses management of solids and hazardous wastes generated from domestic, commercial, and industrial sources. It includes the following: waste minimisation; promotion of efficient use of resources; promotion the use of waste through recycling and energy production; viewing waste as a resource; reducing the mass, volume and toxicity of the waste; disposing of waste in a socially and environmentally acceptable manner; waste avoidance; recycling; energy production; treatment; disposal. Waste management is an important aspect of civil and environmental engineering education.

Assumed knowledge: ENB274 or ENB200 or BEB200 is assumed knowledge.
Equivalents: CEB418
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1

ENB471 DESIGN OF CONCRETE STRUCTURES AND FOUNDATIONS

Concrete design and construction; roles of building professionals; current structures; structural systems; load paths; rules of thumb; building layout, function and form, design effects; seismic and element loads; formwork and placement constraints; reinforced and prestressed concrete slabs, beams and columns; architectural issues, connections and detailing; site investigation, spread and pile footings and foundations; retaining walls.

Prerequisites: ENB276 and ENB371
Equivalents: CEB424
Credit points: 12
Contact hours: 4 per week
Campus: Gardens Point
Teaching period: 2011 SEM-1
ENB474 FINITE ELEMENT METHODS
The Finite Element Method (FEM) is 20th century's answer for treating complex problems, which had hitherto remained impossible to solve, in several areas of engineering such as structural, geotechnical, electrical, heat conduction, etc. The applications of this powerful computer based method has rapidly extended to cover several areas of engineering. In the structures area, the displacements and stresses in complex concrete connections, dams, deep beams with openings, shell structures, etc., can only be obtained by finite element analysis. Basic theory of FEM and its features such as engineering actions, modelling techniques, choice of elements, boundary conditions and input data will be covered in this unit. It aims in equipping engineers with skills to apply FEM effectively in structural, geotechnical and water engineering problems.
Prerequisites: ENB475 Assumed knowledge: ENB102 or ENB270 are assumed knowledge. Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-2

NQB302 EARTH SURFACE SYSTEMS
Understanding long and short term climate and environmental change is now recognised as crucial to the interpretation of our biotic, geomorphic and cultural landscapes. To fully understand environment change it is important to recognise the interconnectedness between the atmosphere, hydrosphere, lithosphere, biosphere and humanity's place within these spheres over various temporal and spatial scales. Developing knowledge of past and present climate change and landscaping processes helps to predict future process pathways for natural resource management, civil engineering, risk analysis, and impact assessment in the context of both natural and anthropogenic induced change.
Assumed knowledge: NQB201 is assumed knowledge. Equivalents: NRB301 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-1

ENB476 CIVIL ENGINEERING DESIGN PROJECT
Through preparation of various civil engineering design elements of a major project, this final design strand unit builds upon the earlier units to polish students’ professional capabilities as expected of a graduate civil engineer. Students will be expected to apply to their project the knowledge and experience gained in the civil engineering sub-disciplinary core units including: Geotechnical Engineering 2, Water Engineering, and Transport Engineering. The aims of this unit are to provide you with an understanding of the role of the civil engineer within a major project, including the various technical activities undertaken, overall project management, and an understanding of community expectations.
Prerequisites: (ENB371 and ([ENB372, ENB376, and ENB378] or EN40MJR-CVCOENG)) Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-2

NQB314 SEDIMENTARY GEOLOGY
This unit provides students with an introduction to sedimentology: both sediments and sedimentary rocks. The unit focuses on the link between the range of features preserved in sedimentary rocks and what those features tell us about sedimentary processes, depositional environments and the burial history of the rocks. The sedimentological processes and depositional environments observed in the modern world are discussed and used as a foundation for interpreting the evidence preserved in the ancient sedimentary rock record, in turn revealing much about earth processes in geologic history.
Assumed knowledge: NQB201 is assumed knowledge. Equivalents: NRB331 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-1

MAB233 ENGINEERING MATHEMATICS 3
This unit will provide you with the foundation knowledge and skills to carry out a statistical data investigation including defining the problem, planning the investigation, collecting and analysing data, and reporting conclusions in context. It will also provide you with foundation knowledge and concepts of probability, random variables and distributions for further learning in engineering.
Prerequisites: MAB131 or MAB182 or MAB121 or MAB126 or MAB127 Antirequisites: BSB123, MAB101, MAN101 Credit points: 12 Contact hours: 4 per week Campus: Gardens Point Teaching period: 2011 SEM-1 and 2011 SEM-2

NQB403 SOILS AND THE ENVIRONMENT
This unit will provide you with grounding in soil science (pedology) by emphasising pedological principles, their application to environmental soil analysis and management, and knowledge of ecosystem function of soil in a changing environment. This one of the most critical resources to us about sedimentary processes, depositional environments and the burial history of the rocks. The sedimentological processes and depositional environments observed in the modern world are discussed and used as a foundation for interpreting the evidence preserved in the ancient sedimentary rock record, in turn revealing much about earth processes in geologic history.
Assumed knowledge: NQB302 or NRB301 or (ENB272 and ENB274) Credit points: 12 Contact hours: 4 per week
NQB601 SUSTAINABLE ENVIRONMENTAL MANAGEMENT

This unit provides background and details on global sustainable management issues and practices with a focus on Australia. It is therefore an important unit of study for any graduate wishing to pursue a career in environmental science who shares an abiding interest in the state and sustainable management of our planet. The unit complements other advanced units dealing with environmental science and its practice. The aim of this unit is to gain deeper understanding of a variety of current issues in environmental management; their multi-disciplinary nature, the science behind them, and the ways of achieving sustainable environmental management in scientific and practicable ways.

Assumed knowledge: 48 credit points of second level science units is assumed knowledge. **Equivalents:** NRB600
Credit points: 12
Contact hours: 4 per week

Campus: Gardens Point
Teaching period: 2011 SEM-2

NQB614 GROUNDWATER SYSTEMS

This unit focuses on the origin, occurrence and movement of groundwater; aquifer properties; chemistry and quality of groundwater; exploration methods for groundwater; drilling methods and well testing equipment; assessment of groundwater problems, both supply and quality; and introduction to modelling of groundwater systems. Groundwater resources of Australia are covered and current issues. Lectures are supported by desktop exercises. Students will obtain practical experience with pump tests and computer modelling. There is interaction with government and private sector hydrogeologists, and a field site visit for hands-on well testing.

Prerequisites: NQB302 or NRB301 or ENB383
Equivalents: NRB633
Credit points: 12
Contact hours: 4 per week

Campus: Gardens Point
Teaching period: 2011 SEM-2

PQB360 GLOBAL ENERGY BALANCE AND CLIMATE CHANGE

Modern societies are becoming increasingly aware of potential environmental problems associated with conventional energy production technologies. Application of alternative technologies is therefore increasing, with ambitious targets and plans to support research and development for reducing energy related environmental consequences. This unit is designed to offer science and engineering students an opportunity to gain awareness about the expanding field of alternative energy technologies and to understand relationships between use of energy and its impact on local and global environment.

Prerequisites: MAB121 and MAB122
Equivalents: PCB563
Credit points: 12
Contact hours: 4 per week

Campus: Gardens Point
Teaching period: 2011 SEM-1

UDB266 PLANNING PROCESSES AND CONSULTATIONS

Students learn how land uses are generated and can be planned. They study the logic, role and methods of successive stages of planning processes including aims, information analysis and synthesis, evaluation, strategy development, monitoring and review. They learn how to consult widely in the community and with other professionals to develop and apply flexible and widely relevant planning processes.

Prerequisites: (UDB163 and UDB164) or ENB274 or DE40MJR-LNDARCH - Landscape Architecture Major
Equivalents: PSB433
Credit points: 12
Contact hours: 3 per week

Campus: Gardens Point
Teaching period: 2011 SEM-1